ﻻ يوجد ملخص باللغة العربية
We show that the difference between the Ar and Si relative abundance ratio derived from FUSE absorption spectra and from the HII regions of I Zw 18 is a consequence of the microturbulent analysis applied to the absorption spectra. FUSE observations were performed with a large entrance aperture which fully covered the galaxy. This means that the observed profiles are averaged over the full body of I Zw 18, implying that large-scale velocity fields influence the absorption - line profiles. Taking this into account, we show that the absorption spectra are consistent with the same metal abundances as those derived from the HII regions. It follows that no significant ionization correction as suggested by Izotov and collaborators to describe metal contents in damped Ly-alpha systems (DLA) is required to model abundances in the neutral gas of I Zw 18 (a local DLA system). Using a mesoturbulent approach and applying the generalized radiative transfer equation to the ArI1048 and SiII1020 lines observed by Vidal-Madjar et al., we found that the profiles may be reproduced with log (Ar/Si) ~= - 0.8 and N(SiII) ~= 4 10^{15} cm^{-2}.
Nitrogen is thought to have both primary and secondary origins depending on whether the seed carbon and oxygen are produced by the star itself (primary) or already present in the interstellar medium (secondary) from which star forms. DLA and sub-DLA
We report on new FUSE far-UV spectroscopy of the most metal-poor blue compact dwarf galaxy I Zw 18. The new data represent an improvement over previous FUSE spectra by a factor of 1.7 in the signal-to-noise. Together with a larger spectral coverage (
Ultraviolet and 21-cm observations suggest that the extremely low-metallicity galaxy, I Zw 18, is a stream-fed galaxy containing a pocket of pristine stars responsible for producing nebular He II recombination emission observed in I Zw18-NW. Far-UV s
Hubble Space Telescope (HST) colour - magnitude diagrams in B, V and R along with long-slit Multiple Mirror Telescope (MMT) spectrophotometric data are used to investigate the evolutionary status of the nearby blue compact dwarf (BCD) galaxy I Zw 18.
We report the discovery of broad Wolf-Rayet emission lines in the Multiple Mirror Telescope (MMT) spectrum of the NW component of I Zw 18, the lowest-metallicity blue compact dwarf (BCD) galaxy known. Two broad Wolf-Rayet (W-R) bumps at the wavelengt