ﻻ يوجد ملخص باللغة العربية
Observations of the rho Ophiuchi star forming region with VLT ANTU and ISAAC under 0.35 seeing conditions reveal two bipolar reflection nebulosities intersected by central dust lanes. The sources (OphE-MM3 and CRBR 2422.8-3423) can be identified as spatially resolved circumstellar disks viewed close to edge-on, similar to edge-on disk sources discovered previously in the Taurus and Orion star forming regions. Millimeter continuum fluxes yield disk masses of the order of 0.01 Mo, i.e. about the mass deemed necessary for the minimum solar nebula. Follow-up spectroscopic observations with SUBARU and CISCO show that both disk sources exhibit featureless continua in the K-band. No accretion or outflow signatures were detected. The slightly less edge-on orientation of the disk around CRBR 2422.8-3423 compared to HH 30 leads to a dramatic difference in the flux seen in the ISOCAM 4.5 mu to 12 mu bands. The observations confirm theoretical predictions on the effect of disk geometry and inclination angle on the spectral energy distribution of young stellar objects with circumstellar disks.
We report the discovery in NIR with SofI at the NTT of a resolved circumstellar dust disk around a 2MASS source at the periphery of the rho Ophiuchi dark cloud. We present follow-up observations in J, H, and Ks-band obtained with ISAAC at the VLT, un
Star formation in molecular clouds can be triggered by the dynamical action of winds from massive stars. Furthermore, X-ray and UV fluxes from massive stars can influence the life time of surrounding circumstellar disks. We present the results of a 5
Models of pure gas-phase chemistry in well-shielded regions of molecular clouds predict relatively high levels of molecular oxygen, O2, and water, H2O. Contrary to expectation, the space missions SWAS and Odin found only very small amounts of water v
We present new multiwavelength submillimeter continuum measurements of the circumstellar dust around 48 young stars in the $rho$ Ophiuchus dark clouds. Supplemented with previous 1.3 mm observations of an additional 99 objects from the literature, th
There is strong evidence that the planets in the solar system evolved from a disk-shaped solar nebula ~4.56 Gyr ago. By studying young stars in various evolutionary stages, one aims at tracing back the early history of the solar system, in particular