ﻻ يوجد ملخص باللغة العربية
We present new multiwavelength submillimeter continuum measurements of the circumstellar dust around 48 young stars in the $rho$ Ophiuchus dark clouds. Supplemented with previous 1.3 mm observations of an additional 99 objects from the literature, the statistical distributions of disk masses and submillimeter colors are calculated and compared to those in the Taurus-Auriga region. These basic submillimeter properties of young stellar objects in both environments are shown to be essentially identical. As with their Taurus counterparts, the $rho$ Oph circumstellar dust properties are shown to evolve along an empirical evolution sequence based on the infrared spectral energy distribution. The combined $rho$ Oph and Taurus Class II samples (173 sources) are used to set benchmark values for basic outer disk characteristics: M_disk ~ 0.005 solar masses, M_disk/M_star ~ 1%, and $alpha$ ~ 2 (where $F_{ u} propto u^{alpha}$ between 350 microns and 1.3 mm). The precision of these numbers are addressed in the context of substantial solid particle growth in the earliest stages of the planet formation process. There is some circumstantial evidence that disk masses inferred from submillimeter emission may be under-estimated by up to an order of magnitude.
Four Ophiuchus binaries, two Class I systems and two Class II systems, with separations of ~450-1100 AU, were observed with the Owens Valley Radio Observatory (OVRO) millimeter interferometer. In each system, the 3 mm continuum maps show dust emissio
We present a high angular resolution ($sim 0.2^{primeprime}$), high sensitivity ($sigma sim 0.2$ mJy) survey of the 870 $mu$m continuum emission from the circumstellar material around 49 pre-main sequence stars in the $rho$ Ophiuchus molecular cloud.
The study of the properties of disks around young brown dwarfs can provide important clues on the formation of these very low-mass objects and on the possibility of forming planetary systems around them. The presence of warm dusty disks around brown
A clear understanding of the chemical processing of matter, as it is transferred from a molecular cloud to a planetary system, depends heavily on knowledge of the physical conditions endured by gas and dust as these accrete onto a disk and are incorp
We present results of a coronographic imaging search for circumstellar dust disks with the Adaptive Optics Near Infrared System (ADONIS) at the ESO 3.6m telescope in La Silla (Chile). 22 candidate stars, known to be orbited by a planet or to show inf