ﻻ يوجد ملخص باللغة العربية
We surveyed 81 dense molecular cores associated with regions of massive star formation and Sgr A in the 5_{05}-4_{04} and 10_{010}-9_{09} lines of HNCO. Line emission was detected towards 57 objects. Selected subsamples were also observed in other HNCO lines covering a frequency range from 22 to 461 GHz. HNCO lines from the K_{-1} = 2,3 ladders were detected in several sources. Towards Orion-KL, K_{-1} = 5 transitions with upper state energies E_u/k ~ 1100 and 1300 K could be observed. Five HNCO cores were mapped. The sources remain spatially unresolved at 220 and 461 GHz with beam sizes of 24 and 18, respectively. Typical HNCO abundances relative to H_2 as derived from a population diagram analysis are ~ 10^{-9}. The rotational temperatures reach ~ 500 K. The gas densities in regions of HNCO $K_{-1}=0$ emission should be n > 10^6 cm^{-3} and in regions of K_{-1}>0 emission about an order of magnitude higher even for radiative excitation. HNCO abundances are found to be enhanced in high-velocity gas. HNCO integrated line intensities correlate well with those of thermal SiO emission. This indicates a spatial coexistence of the two species and may hint at a common production mechanism, presumably based on shock chemistry.
Chemical composition of the massive cores forming high-mass stars can put some constrains on the time scale of the massive star formation: sulphur chemistry is of specific interest due to its rapid evolution in warm gas and because the abundance of s
Theoretical and numerical works indicate that a strong magnetic field should suppress fragmentation in dense cores. However, this has never been tested observationally in a relatively large sample of fragmenting massive dense cores. Here we use the p
We present Plateau de Bure interferometer observations obtained in continuum at 1.3 and 3.5 mm towards the six most massive and young (IR-quiet) dense cores in Cygnus X. Located at only 1.7 kpc, the Cygnus X region offers the opportunity of reaching
We report new calculations of interstellar 15N fractionation. Previously, we have shown that large enhancements of 15N/14N can occur in cold, dense gas where CO is frozen out, but that the existence of an NH + N channel in the dissociative recombinat
We aim at characterising dense cores in the clustered environments associated with massive star-forming regions. For this, we present an uniform analysis of VLA NH3(1,1) and (2,2) observations towards a sample of 15 massive star-forming regions, wher