ﻻ يوجد ملخص باللغة العربية
We present deep spectroscopic and imaging data of the host galaxies of Mrk 1014, IRAS 07598+6508, and Mrk 231. These objects form part of both the QSO and the ultraluminous infrared galaxy (ULIG) families, and may represent a transition stage in an evolutionary scenario. Our imaging shows that all three objects have highly perturbed hosts with tidal tails and destroyed disks, and appear to be in the final stages of major mergers. The host galaxies of the three objects have spectra typical of E+A galaxies, showing simultaneously features from an old and a young stellar component. We model spectra from different regions of the host galaxies using Bruzual & Charlot spectral synthesis models using two component models including an old underlying population and recent superposed starbursts. Our results indicate a strong connection between interactions and vigorous bursts of star formation in these objects. We propose that the starburst ages found are indicative of young ages for the QSO activity. The young starburst ages found are also consistent with the intermediate position of these objects in the far infrared color-color diagram. (abridged)
One of the puzzles in understanding the spectra of active galactic nuclei (AGN) is the origin of the FeII emission. FeI emission, if present, will help reveal the physical conditions of the emitting gas. In an attempt to verify the presence of FeI li
We report the detection of an emission feature at the 12 sigma level with FWHM line width of about 450 km/s toward the nearest quasi-stellar object, QSO Mrk 231. Based on observations with the IRAM 30 m telescope and the NOEMA Interferometer, the 11-
In this paper we report on an XMM-Newton observation of the ultraluminous infrared QSO Mrk 1014. The X-ray observation reveals a power-law dominated (photon index of about 2.2) spectrum with a slight excess in the soft energy range. AGN and starburst
We report on the Herschel/PACS observations of OH in Mrk 231, with detections in 9 doublets observed within the PACS range, and present radiative transfer models for the outflowing OH. Signatures of outflowing gas are found in up to 6 OH doublets wit
Radio monitoring of the broad absorption line quasar (BALQSO) Mrk 231 from 13.9 GHz to 17.6 GHz detected a strong flat spectrum flare. Even though BALQSOs are typically weak radio sources, the 17.6 GHz flux density doubled in ~150 days, from ~135 mJy