ﻻ يوجد ملخص باللغة العربية
We report on the Herschel/PACS observations of OH in Mrk 231, with detections in 9 doublets observed within the PACS range, and present radiative transfer models for the outflowing OH. Signatures of outflowing gas are found in up to 6 OH doublets with different excitation requirements. At least two outflowing components are identified, one with OH radiatively excited, and the other with low excitation, presumably spatially extended. Particularly prominent, the blue wing of the absorption detected in the in-ladder 2Pi_{3/2} J=9/2-7/2 OH doublet at 65 um, with E_lower=290 K, indicates that the excited outflowing gas is generated in a compact and warm (circum)nuclear region. Because the excited, outflowing OH gas in Mrk 231 is associated with the warm, far-IR continuum source, it is likely more compact (diameter of 200-300 pc) than that probed by CO and HCN. Nevertheless, its mass-outflow rate per unit of solid angle as inferred from OH is similar to that previously derived from CO, >~70x(2.5x10^{-6}/X_{OH}) Msun yr^{-1} sr^{-1}, where X_{OH} is the OH abundance relative to H nuclei. In spherical symmetry, this would correspond to >~850x(2.5x10^{-6}/X_{OH}) Msun yr^{-1}, though significant collimation is inferred from the line profiles. The momentum flux of the excited component attains ~15 L_{AGN}/c, with an OH column density of (1.5-3)x10^{17} cm^-2 and a mechanical luminosity of ~10^{11} Lsun. The detection of very excited OH peaking at central velocities indicates the presence of a nuclear reservoir of gas rich in OH, plausibly the 130-pc scale circumnuclear torus previously detected in OH megamaser emission, that may be feeding the outflow. An exceptional ^{18}OH enhancement, with OH/^{18}OH<~30 at both central and blueshifted velocities, is likely the result of interstellar-medium processing by recent starburst/SNe activity.
We report the detection of an emission feature at the 12 sigma level with FWHM line width of about 450 km/s toward the nearest quasi-stellar object, QSO Mrk 231. Based on observations with the IRAM 30 m telescope and the NOEMA Interferometer, the 11-
Aims: Our goal is to study the chemical composition of the outflows of active galactic nuclei and starburst galaxies. Methods: We obtained high-resolution interferometric observations of HCN and HCO$^+$ $J=1rightarrow0$ and $J=2rightarrow1$ of the
The oxygen-bearing molecular ions OH+, H2O+, and H3O+ are key species that probe the ionization rate of (partially) molecular gas that is ionized by X-rays and cosmic rays permeating the interstellar medium. We report Herschel far-infrared and submil
Radio monitoring of the broad absorption line quasar (BALQSO) Mrk 231 from 13.9 GHz to 17.6 GHz detected a strong flat spectrum flare. Even though BALQSOs are typically weak radio sources, the 17.6 GHz flux density doubled in ~150 days, from ~135 mJy
The quasi-stellar object (QSO)/merger Mrk 231 is arguably the nearest and best laboratory for studying QSO feedback. It hosts several outflows, including broad-line winds, radio jets, and a poorly-understood kpc scale outflow. In this Letter, we pres