ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on the Cosmic Infra-Red Background based on BeppoSAX and CAT spectra of Mkn 501

81   0   0.0 ( 0 )
 نشر من قبل Cecile Renault
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Guy




اسأل ChatGPT حول البحث

The TeV and X-ray data obtained by the imaging Cherenkov telescope CAT and X-ray satellite BeppoSAX during the remarkable flare of Mkn 501 in April 16, 1997 are used to constrain the flux of the Cosmic Infrared Background (CIB) using different CIB models. We show that a non-negligible absorption of gamma-rays due to the CIB could take place already in the low-energy (sub-TeV) domain of the spectrum of Mkn 501. This implies that the data of the low-energy threshold CAT telescope contain very important information about the CIB at short wavelengths, 0.4 mum <= lambda <= 3. mum. The analysis of almost simultaneous spectroscopic measurements of Mkn 501 in a high state by CAT and BeppoSAX in the framework of the standard homogeneous Synchrotron-Self-Compton (SSC) framework model leads to the conclusion that the density of the near-infrared background with typical ``starlight spectrum around 1 mum should be between 5 and 35 nW m^-2 sr^-1 (99 % CL), with most likely value around 20 nW m^-2 sr^-1. Also we argue that the CAT gamma-ray data alone allow rather robust upper limits on the CIB, lambda F_lambda <= 60 nW m^-2 sr^-1 at 1 mum, taking into account that for any reasonable scenario of gamma-ray production the differential intrinsic spectrum of gamma-ray hardly could be flatter than dN/dE == E^-1. This estimate agrees, within statistical and systematic uncertainties, with recent reports about tentative detections of the CIB at 2.2 and 3.5 mum by the Diffuse Infrared Background Experiment (DIRBE), as well as with the measurements of the background radiation at optical wavelengths from absolute photometry. We also discuss the impact of the intergalactic absorption effect in derivation of the SSC parameters for the jet in Mkn 501.



قيم البحث

اقرأ أيضاً

98 - E. Massaro , M. Perri , P. Giommi 2004
We present the results of a spectral and temporal study of the complete set of BeppoSAX NFI (11) and WFC (71) observations of the BL Lac object Mkn 501. The WFC 2-28 keV data, reported here for the first time, were collected over a period of about fi ve years, from September 1996 to October 2001. These observations, although not evenly distributed, show that Mkn 501, after going through a very active phase from spring 1997 to early 1999, remained in a low brightness state until late 2001. The data from the LECS, MECS and PDS instruments, covering the wide energy interval 0.1-150 keV, have been used to study in detail the spectral variability of the source. We show that the X-ray energy distribution of Mkn 501 is well described by a log-parabolic law in all luminosity states. This model allowed us to obtain good estimates of the SED synchrotron peak energy and of its associated power. The strong spectral variability observed, consisting of strictly correlated changes between the synchrotron peak energy and bolometric flux, suggests that the main physical changes are not only due to variations of the maximum Lorentz factor of the emitting particles but that other quantities must be varying as well. During the 1997 flare the high energy part of the spectrum of Mkn 501 shows evidence of an excess above the best fit log-parabolic law suggesting the existence of a second emission component that may be responsible for most of the observed variability.
120 - S. Berta , B. Magnelli , D. Lutz 2010
The constituents of the cosmic IR background (CIB) are studied at its peak wavelengths (100 and 160 um) by exploiting Herschel/PACS observations of the GOODS-N, Lockman Hole, and COSMOS fields in the PACS Evolutionary Probe (PEP) guaranteed-time surv ey. The GOODS-N data reach 3 sigma depths of ~3.0 mJy at 100 um and ~5.7 mJy at 160 um. At these levels, source densities are 40 and 18 beams/source, respectively, thus hitting the confusion limit at 160 um. Differential number counts extend from a few mJy up to 100-200 mJy, and are approximated as a double power law, with the break lying between 5 and 10 mJy. The available ancillary information allows us to split number counts into redshift bins. At z<=0.5 we isolate a class of luminous sources (L(IR)~1e11 Lsun), whose SEDs resemble late-spiral galaxies, peaking at ~130 um restframe and significantly colder than what is expected on the basis of pre-Herschel models. By integrating number counts over the whole covered flux range, we obtain a surface brightness of 6.36 +/- 1.67 and 6.58 +/-1.62 [nW m^-2 sr^-1] at 100 and 160 um, resolving ~45% and ~52% of the CIB, respectively. When stacking 24 um sources, the inferred CIB lies within 1.1 sigma and 0.5 sigma from direct measurements in the two bands, and fractions increase to 50% and 75%.Most of this resolved CIB fraction was radiated at z<=1.0, with 160 um sources found at higher redshift than 100 um ones.
84 - G. Fossati 1999
Mkn 421 was repeatedly observed with BeppoSAX in 1997-1998. We present highlights of the results of the thorough temporal and spectral analysis discussed by Fossati et al. (1999) and Maraschi et al. (1999), focusing on the flare of April 1998, which was simultaneously observed also at TeV energies. The detailed study of the flare in different energy bands reveals a few very important new results: (a) hard photons lag the soft ones by 2-3 ks *a behavior opposite to what is normally found in High energy peak BL Lacs X-ray spectra*; (b) the flux decay of the flare can be intrinsically achromatic if a stationary underlying emission component is present. Moreover the spectral evolution during the flare has been followed by extracting X-ray spectra on few ks intervals, allowing to detect for the first time the peak of the synchrotron component shifting to higher energies during the rising phase, and then receding. The spectral analysis confirms the delay in the flare at the higher energies, as above a few keV the spectrum changes only after the peak of the outburst has occurred. The spectral and temporal information obtained challenge the simplest models currently adopted for the (synchrotron) emission and most importantly provide clues on the particle acceleration process. A theoretical picture accounting for all the observational constraints is discussed, where electrons are injected at low energies and then progressively accelerated during the development of the flare.
71 - D. Gotz , O. Boulade , B. Cordier 2018
The Infra-Red Telescope (IRT) on board the Transient High Energy Sky and Early Universe Surveyor (THESEUS) ESA M5 candidate mission will play a key role in identifying and characterizing moderate to high redshift Gamma-Ray Bursts afterglows. The IRT is the enabling instrument on board THESEUS for measuring autonomously the redshift of the several hundreds of GRBs detected per year by the Soft X-ray Imager (SXI) and the X- and Gamma-Ray Imaging Spectrometer (XGIS), and thus allowing the big ground based telescopes to be triggered on a redshift pre-selected sample, and finally fulfilling the cosmological goals of the mission. The IRT will be composed by a primary mirror of 0.7 m of diameter coupled to a single camera in a Cassegrain design. It will work in the 0.7-1.8 {mu}m wavelength range, and will provide a 10x10 arc min imaging field of view with sub-arc second localization capabilities, and, at the same time, a 5x5 arc min field of view with moderate (R up to ~500) spectroscopic capabilities. Its sensitivity, mainly limited by the satellite jitter, is adapted to detect all the GRBs, localized by the SXI/XGIS, and to acquire spectra for the majority of them.
Recent work by Aplin and Lockwood [1] was interpreted by them as showing that there is a multiplying ratio of order 10$^{12}$ for the infra-red energy absorbed in the ionization produced by cosmic rays in the atmosphere to the energy content of the c osmic rays themselves. We argue here that the interpretation of the result in terms of infra-red absorption by ionization is incorrect and that the result is therefore most likely due to a technical artefact
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا