ﻻ يوجد ملخص باللغة العربية
The Infra-Red Telescope (IRT) on board the Transient High Energy Sky and Early Universe Surveyor (THESEUS) ESA M5 candidate mission will play a key role in identifying and characterizing moderate to high redshift Gamma-Ray Bursts afterglows. The IRT is the enabling instrument on board THESEUS for measuring autonomously the redshift of the several hundreds of GRBs detected per year by the Soft X-ray Imager (SXI) and the X- and Gamma-Ray Imaging Spectrometer (XGIS), and thus allowing the big ground based telescopes to be triggered on a redshift pre-selected sample, and finally fulfilling the cosmological goals of the mission. The IRT will be composed by a primary mirror of 0.7 m of diameter coupled to a single camera in a Cassegrain design. It will work in the 0.7-1.8 {mu}m wavelength range, and will provide a 10x10 arc min imaging field of view with sub-arc second localization capabilities, and, at the same time, a 5x5 arc min field of view with moderate (R up to ~500) spectroscopic capabilities. Its sensitivity, mainly limited by the satellite jitter, is adapted to detect all the GRBs, localized by the SXI/XGIS, and to acquire spectra for the majority of them.
The Infra-Red Telescope (IRT) is part of the payload of the THESEUS mission, which is one of the two ESA M5 candidates within the Cosmic Vision program, planned for launch in 2032. The THESEUS payload, composed by two high energy wide field monitors
The X and Gamma Imaging Spectrometer instrument on-board the THESEUS mission (selected by ESA in the framework of the Cosmic Vision M5 launch opportunity, currently in phase A) is based on a detection plane composed of several thousands of single act
The XGIS (X and Gamma Imaging Spectrometer) is one of the three instruments onboard the THESEUS mission (ESA M5, currently in Phase-A). Thanks to its wide field of view and good imaging capabilities, it will efficiently detect and localize gamma-ray
THESEUS, one of the two space mission concepts being studied by ESA as candidates for next M5 mission within its Comsic Vision programme, aims at fully exploiting Gamma-Ray Bursts (GRB) to solve key questions about the early Universe, as well as beco
Within the scientific goals of the THESEUS ESA/M5 candidate mission, a critical item is a fast (within a few s) and accurate (<15 arcmin) Gamma-Ray Burst and high-energy transient location from a few keV up to hard X-ray energy band. For that purpose