ترغب بنشر مسار تعليمي؟ اضغط هنا

The Infra-Red Telescope on board the THESEUS mission

72   0   0.0 ( 0 )
 نشر من قبل Enrico Bozzo
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Infra-Red Telescope (IRT) on board the Transient High Energy Sky and Early Universe Surveyor (THESEUS) ESA M5 candidate mission will play a key role in identifying and characterizing moderate to high redshift Gamma-Ray Bursts afterglows. The IRT is the enabling instrument on board THESEUS for measuring autonomously the redshift of the several hundreds of GRBs detected per year by the Soft X-ray Imager (SXI) and the X- and Gamma-Ray Imaging Spectrometer (XGIS), and thus allowing the big ground based telescopes to be triggered on a redshift pre-selected sample, and finally fulfilling the cosmological goals of the mission. The IRT will be composed by a primary mirror of 0.7 m of diameter coupled to a single camera in a Cassegrain design. It will work in the 0.7-1.8 {mu}m wavelength range, and will provide a 10x10 arc min imaging field of view with sub-arc second localization capabilities, and, at the same time, a 5x5 arc min field of view with moderate (R up to ~500) spectroscopic capabilities. Its sensitivity, mainly limited by the satellite jitter, is adapted to detect all the GRBs, localized by the SXI/XGIS, and to acquire spectra for the majority of them.



قيم البحث

اقرأ أيضاً

The Infra-Red Telescope (IRT) is part of the payload of the THESEUS mission, which is one of the two ESA M5 candidates within the Cosmic Vision program, planned for launch in 2032. The THESEUS payload, composed by two high energy wide field monitors (SXI and XGIS) and a near infra-red telescope (IRT), is optimized to detect, localize and characterize Gamma-Ray Bursts and other high-energy transients. The main goal of the IRT is to identify and precisely localize the NIR counterparts of the high-energy sources and to measure their distance. Here we present the design of the IRT and its expected performance.
The X and Gamma Imaging Spectrometer instrument on-board the THESEUS mission (selected by ESA in the framework of the Cosmic Vision M5 launch opportunity, currently in phase A) is based on a detection plane composed of several thousands of single act ive elements. Each element comprises a 4.5x4.5x30 mm 3 CsI(Tl) scintillator bar, optically coupled at both ends to Silicon Drift Detectors (SDDs). The SDDs acts both as photodetectors for the scintillation light and as direct X-ray sensors. In this paper the design of the XGIS detection plane is reviewed, outlining the strategic choices in terms of modularity and redundancy of the system. Results on detector-electronics prototypes are also described. Moreover, the design and development of the low-noise front-end electronics is presented, emphasizing the innovative architectural design based on custom-designed Application-Specific Integrated Circuits (ASICs).
The XGIS (X and Gamma Imaging Spectrometer) is one of the three instruments onboard the THESEUS mission (ESA M5, currently in Phase-A). Thanks to its wide field of view and good imaging capabilities, it will efficiently detect and localize gamma-ray bursts and other transients in the 2-150 keV sky, and also provide spectroscopy up to 10 MeV. Its current design has been optimized by means of scientific simulations based on a Monte Carlo model of the instrument coupled to a state-of-the-art description of the populations of long and short GRBs extending to high redshifts. We describe the optimization process that led to the current design of the XGIS, based on two identical units with partially overlapping fields of view, and discuss the expected performance of the instrument.
96 - L. Amati , P.T. OBrien , D. Gotz 2021
THESEUS, one of the two space mission concepts being studied by ESA as candidates for next M5 mission within its Comsic Vision programme, aims at fully exploiting Gamma-Ray Bursts (GRB) to solve key questions about the early Universe, as well as beco ming a cornerstone of multi-messenger and time-domain astrophysics. By investigating the first billion years of the Universe through high-redshift GRBs, THESEUS will shed light on the main open issues in modern cosmology, such as the population of primordial low mass and luminosity galaxies, sources and evolution of cosmic re-ionization, SFR and metallicity evolution up to the cosmic dawn and across Pop-III stars. At the same time, the mission will provide a substantial advancement of multi-messenger and time-domain astrophysics by enabling the identification, accurate localisation and study of electromagnetic counterparts to sources of gravitational waves and neutrinos, which will be routinely detected in the late 20s and early 30s by the second and third generation Gravitational Wave (GW) interferometers and future neutrino detectors, as well as of all kinds of GRBs and most classes of other X/gamma-ray transient sources. In all these cases, THESEUS will provide great synergies with future large observing facilities in the multi-messenger domain. A Guest Observer programme, comprising Target of Opportunity (ToO) observations, will expand the science return of the mission, to include, e.g., solar system minor bodies, exoplanets, and AGN.
Within the scientific goals of the THESEUS ESA/M5 candidate mission, a critical item is a fast (within a few s) and accurate (<15 arcmin) Gamma-Ray Burst and high-energy transient location from a few keV up to hard X-ray energy band. For that purpose , the signal multiplexing based on coded masks is the selected option to achieve this goal. This contribution is implemented by the XGIS Imaging System, based on that technique. The XGIS Imaging System has the heritage of previous payload developments: LEGRI/Minisat-01, INTEGRAL, UFFO/Lomonosov and ASIM/ISS. In particular the XGIS Imaging System is an upgrade of the ASIM system in operation since 2018 on the International Space Station. The scientific goal is similar: to detect a gamma-ray transient. But while ASIM focuses on Terrestrial Gamma-ray Flashes, THESEUS aims for the GRBs. For each of the two XGIS Cameras, the coded mask is located at 630 mm from the detector layer. The coding pattern is implemented in a Tungsten plate (1 mm thickness) providing a good multiplexing capability up to 150 keV. In that way both XGIS detector layers (based on Si and CsI detectors) have imaging capabilities at the medium - hard X-ray domain. This is an improvement achieved during the current THESEUS Phase-A. The mask is mounted on top of a collimator that provides the mechanical assembly support, as well as good cosmic X-ray background shielding. The XGIS Imaging System preliminary structural and thermal design, and the corresponding analyses, are included in this contribution, as it is a preliminary performance evaluation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا