ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Upper Bound for the Ramsey Number of Fans

138   0   0.0 ( 0 )
 نشر من قبل Vojt\\u{e}ch Dvo\\v{r}\\'ak
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A fan $F_n$ is a graph consisting of $n$ triangles, all having precisely one common vertex. Currently, the best known bounds for the Ramsey number $R(F_n)$ are $9n/2-5 leq R(F_n) leq 11n/2+6$, obtained by Chen, Yu and Zhao. We improve the upper bound to $31n/6+O(1)$.



قيم البحث

اقرأ أيضاً

Let $ G $ be a graph. A subset $S subseteq V(G) $ is called a total dominating set if every vertex of $G$ is adjacent to at least one vertex of $S$. The total domination number, $gamma_{t}$($G$), is the minimum cardinality of a total dominating set o f $G$. In this paper using a greedy algorithm we provide an upper bound for $gamma_{t}$($G$), whenever $G$ is a bipartite graph and $delta(G)$ $geq$ $k$. More precisely, we show that if $k$ > 1 is a natural number, then for every bipartite graph $G$ of order $n$ and $delta(G) ge k$, $ $$gamma_{t}$($G$) $leq$ $n(1- frac{k!}{prod_{i=0}^{k-1}(frac{k}{k-1}+i)}).$
98 - Will Sawin 2021
The multicolor Ramsey number problem asks, for each pair of natural numbers $ell$ and $t$, for the largest $ell$-coloring of a complete graph with no monochromatic clique of size $t$. Recent works of Conlon-Ferber and Wigderson have improved the long standing lower bound for this problem. We make a further improvement by replacing an explicit graph appearing in their constructions by a random graph. Graphs useful for this construction are exactly those relevant for a problem of ErdH{o}s on graphs with no large cliques and few large independent sets. We also make some basic observations about this problem.
111 - Andrii Arman , Troy Retter 2016
Let $r(k)$ denote the maximum number of edges in a $k$-uniform intersecting family with covering number $k$. ErdH{o}s and Lovasz proved that $ lfloor k! (e-1) rfloor leq r(k) leq k^k.$ Frankl, Ota, and Tokushige improved the lower bound to $r(k) geq left( k/2 right)^{k-1}$, and Tuza improved the upper bound to $r(k) leq (1-e^{-1}+o(1))k^k$. We establish that $ r(k) leq (1 + o(1)) k^{k-1}$.
Given a graph $G$ and a positive integer $k$, the emph{Gallai-Ramsey number} is defined to be the minimum number of vertices $n$ such that any $k$-edge coloring of $K_n$ contains either a rainbow (all different colored) copy of $G$ or a monochromatic copy of $G$. In this paper, we obtain general upper and lower bounds on the Gallai-Ramsey numbers for double stars $S(n,m)$, where $S(n,m)$ is the graph obtained from the union of two stars $K_{1,n}$ and $K_{1,m}$ by adding an edge between their centers. We also provide the sharp result in some cases.
We find the exact value of the Ramsey number $R(C_{2ell},K_{1,n})$, when $ell$ and $n=O(ell^{10/9})$ are large. Our result is closely related to the behaviour of Turan number $ex(N, C_{2ell})$ for an even cycle whose length grows quickly with $N$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا