ﻻ يوجد ملخص باللغة العربية
Let $r(k)$ denote the maximum number of edges in a $k$-uniform intersecting family with covering number $k$. ErdH{o}s and Lovasz proved that $ lfloor k! (e-1) rfloor leq r(k) leq k^k.$ Frankl, Ota, and Tokushige improved the lower bound to $r(k) geq left( k/2 right)^{k-1}$, and Tuza improved the upper bound to $r(k) leq (1-e^{-1}+o(1))k^k$. We establish that $ r(k) leq (1 + o(1)) k^{k-1}$.
A family $mathcal F$ has covering number $tau$ if the size of the smallest set intersecting all sets from $mathcal F$ is equal to $s$. Let $m(n,k,tau)$ stand for the size of the largest intersecting family $mathcal F$ of $k$-element subsets of ${1,ld
An ordered hypergraph is a hypergraph $H$ with a specified linear ordering of the vertices, and the appearance of an ordered hypergraph $G$ in $H$ must respect the specified order on $V(G)$. In on-line Ramsey theory, Builder iteratively presents edge
The Wiener index of a connected graph is the summation of all distances between unordered pairs of vertices of the graph. In this paper, we give an upper bound on the Wiener index of a $k$-connected graph $G$ of order $n$ for integers $n-1>k ge 1$:
For $n > 2k geq 4$ we consider intersecting families $mathcal F$ consisting of $k$-subsets of ${1, 2, ldots, n}$. Let $mathcal I(mathcal F)$ denote the family of all distinct intersections $F cap F$, $F eq F$ and $F, Fin mathcal F$. Let $mathcal A$
A fan $F_n$ is a graph consisting of $n$ triangles, all having precisely one common vertex. Currently, the best known bounds for the Ramsey number $R(F_n)$ are $9n/2-5 leq R(F_n) leq 11n/2+6$, obtained by Chen, Yu and Zhao. We improve the upper bound to $31n/6+O(1)$.