ترغب بنشر مسار تعليمي؟ اضغط هنا

Circulant $L$-ensembles in the thermodynamic limit

162   0   0.0 ( 0 )
 نشر من قبل Peter Forrester
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

$L$-ensembles are a class of determinantal point processes which can be viewed as a statistical mechanical systems in the grand canonical ensemble. Circulant $L$-ensembles are the subclass which are locally translationally invariant and furthermore subject to periodic boundary conditions. Existing theory can very simply be specialised to this setting, allowing for the derivation of formulas for the system pressure, and the correlation kernel, in the thermodynamic limit. For a one-dimensional domain, this is possible when the circulant matrix is both real symmetric, or complex Hermitian. The special case of the former having a Gaussian functional form for the entries is shown to correspond to free fermions at finite temperature, and be generalisable to higher dimensions. A special case of the latter is shown to be the statistical mechanical model introduced by Gaudin to interpolate between Poisson and unitary symmetry statistics in random matrix theory. It is shown in all cases that the compressibility sum rule for the two-point correlation is obeyed, and the small and large distance asymptotics of the latter are considered. Also, a conjecture relating the asymptotic form of the hole probability to the pressure is verified.



قيم البحث

اقرأ أيضاً

116 - JM Harrison , E Swindle 2018
We introduce a new model for investigating spectral properties of quantum graphs, a quantum circulant graph. Circulant graphs are the Cayley graphs of cyclic groups. Quantum circulant graphs with standard vertex conditions maintain important features of the prototypical quantum star graph model. In particular, we show the spectrum is encoded in a secular equation with similar features. The secular equation of a quantum circulant graph takes two forms depending on whether the edge lengths respect the cyclic symmetry of the graph. When all the edge lengths are incommensurate, the spectral statistics correspond to those of random matrices from the Gaussian Orthogonal Ensemble according to the conjecture of Bohigas, Giannoni and Schmit. When the edge lengths respect the cyclic symmetry the spectrum decomposes into subspectra whose corresponding eigenfunctions transform according to irreducible representations of the cyclic group. We show that the subspectra exhibit intermediate spectral statistics and analyze the small and large parameter asymptotics of the two-point correlation function, applying techniques developed from star graphs. The particular form of the intermediate statistics differs from that seen for star graphs or Dirac rose graphs. As a further application, we show how the secular equations can be used to obtain spectral zeta functions using a contour integral technique. Results for the spectral determinant and vacuum energy of circulant graphs are obtained from the zeta functions.
123 - Elisha D. Wolff 2021
We introduce constellation ensembles, in which charged particles on a line (or circle) are linked with charged particles on parallel lines (or concentric circles). We present formulas for the partition functions of these ensembles in terms of either the Hyperpfaffian or the Berezin integral of an appropriate alternating tensor. Adjusting the distances between these lines (or circles) gives an interpolation between a pair of limiting ensembles, such as one-dimensional $beta$-ensembles with $beta=K$ and $beta=K^2$.
A new family of polarized ensembles of random pure states is presented. These ensembles are obtained by linear superposition of two random pure states with suitable distributions, and are quite manageable. We will use the obtained results for two pur poses: on the one hand we will be able to derive an efficient strategy for sampling states from isopurity manifolds. On the other, we will characterize the deviation of a pure quantum state from separability under the influence of noise.
100 - T. Grava , A. Maspero , G. Mazzuca 2020
We consider the Fermi-Pasta-Ulam-Tsingou (FPUT) chain composed by $N gg 1$ particles and periodic boundary conditions, and endow the phase space with the Gibbs measure at small temperature $beta^{-1}$. Given a fixed ${1leq m ll N}$, we prove that the first $m$ integrals of motion of the periodic Toda chain are adiabatic invariants of FPUT (namely they are approximately constant along the Hamiltonian flow of the FPUT) for times of order $beta$, for initial data in a set of large measure. We also prove that special linear combinations of the harmonic energies are adiabatic invariants of the FPUT on the same time scale, whereas they become adiabatic invariants for all times for the Toda dynamics.
173 - Jinpeng An , Zhengdong Wang 2005
In this paper we present a criterion for the covering condition of the generalized random matrix ensemble, which enable us to verify the covering condition for the seven classes of generalized random matrix ensemble in an unified and simpler way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا