ﻻ يوجد ملخص باللغة العربية
The discovery of the hydrodynamic electron liquid (HEL) in graphene [D. Bandurin emph{et al.}, Science {bf 351}, 1055 (2016) and J. Crossno emph{et al.}, Science {bf 351}, 1058 (2016)] has marked the birth of the solid-state HEL which can be probed near room temperature in a table-top setup. Here we examine the terahertz (THz) magneto-optical (MO) properties of a graphene HEL. Considering the case where the magnetic length $l_B=sqrt{hbar/eB}$ is comparable to the mean-free path $l_{ee}$ for electron-electron interaction in graphene, the MO conductivities are obtained by taking a momentum balance equation approach on the basis of the Boltzmann equation. We find that when $l_Bsim l_{ee}$, the viscous effect in a HEL can weaken significantly the THz MO effects such as cyclotron resonance and Faraday rotation. The upper hybrid and cyclotron resonance magnetoplasmon modes $omega_pm$ are also obtained through the RPA dielectric function. The magnetoplasmons of graphene HEL at large wave-vector regime are affected by the viscous effect, and results in red-shifts of the magnetoplasmon frequencies. We predict that the viscosity in graphene HEL can affect strongly the magneto-optical and magnetoplasmonic properties, which can be verified experimentally.
We study the anomalous Hall effect, magneto-optical properties, and nonlinear optical properties of twisted bilayer graphene (TBG) aligned with hexagonal boron nitride (hBN) substrate as well as twisted double bilayer graphene systems. We show that n
We investigate the resonance energy transfer (RET) rate between two quantum emitters near a suspended graphene sheet in vacuum under the influence of an external magnetic field. We perform the analysis for low and room temperatures and show that, due
We propose and analyze the concept of the vertical hot-electron terahertz (THz) graphene-layer detectors (GLDs) based on the double-GL and multiple-GL structures with the barrier layers made of materials with a moderate conduction band off-set (such
We derive the system of hydrodynamic equations governing the collective motion of massless fermions in graphene. The obtained equations demonstrate the lack of Galilean- and Lorentz invariance, and contain a variety of nonlinear terms due to quasi-re
We propose a hydrodynamic model describing steady-state and dynamic electron and hole transport properties of graphene structures which accounts for the features of the electron and hole spectra. It is intended for electron-hole plasma in graphene ch