ﻻ يوجد ملخص باللغة العربية
We study the anomalous Hall effect, magneto-optical properties, and nonlinear optical properties of twisted bilayer graphene (TBG) aligned with hexagonal boron nitride (hBN) substrate as well as twisted double bilayer graphene systems. We show that non-vanishing valley polarizations in twisted graphene systems would give rise to anomalous Hall effect which can be tuned by in-plane magnetic fields. The valley polarized states are also associated with giant Faraday/Kerr rotations in the terahertz frequency regime. Moreover, both hBN-aligned TBG and TDBG exhibit colossal nonlinear optical responses by virtue of the inversion-symmetry breaking, the small bandwidth, and the small excitation gaps of the systems. Our calculations indicate that in both systems the nonlinear optical conductivities of the shift currents are on the order of $10^3,mu$A/V$^2$; and the second harmonic generation (SHG) susceptibilities are on the order of $10^6,$pm/V in the terahertz frequency regime. Moreover, in TDBG with $ABtextrm{-}BA$ stacking, we find that a finite orbital magnetization would generate a new component $sigma^{x}_{xx} $ of the nonlinear photoconductivity tensor; while in $AB$-$AB$ stacked TDBG with vertical electric fields, the valley polarization and orbital magnetization would make significant contributions to the $sigma^{y}_{xx}$ component of the photoconductivity tensor. These nonlinear photo-conductivities are proportional to the orbital magnetizations of the systems, thus they are expected to exhibit hysteresis behavior in response to out-of-plane magnetic fields.
We propose an ultrafast all-optical anomalous Hall effect in two-dimensional (2D) semiconductors of hexagonal symmetry such as gapped graphene (GG), transition metal dichalcogenides (TMDCs), and hexagonal boron nitride (h-BN). To induce such an effec
The generalized tight-binding model is developed to investigate the magneto-electronic properties in twisted bilayer graphene system. All the interlayer and intralayer atomic interactions are included in the Moire superlattice. The twisted bilayer gr
We study the electronic structures and topological properties of $(M+N)$-layer twisted graphene systems. We consider the generic situation that $N$-layer graphene is placed on top of the other $M$-layer graphene, and is twisted with respect to each o
The discovery of the hydrodynamic electron liquid (HEL) in graphene [D. Bandurin emph{et al.}, Science {bf 351}, 1055 (2016) and J. Crossno emph{et al.}, Science {bf 351}, 1058 (2016)] has marked the birth of the solid-state HEL which can be probed n
Van der Waals (vdW) heterostructures ---formed by stacking or growing two-dimensional (2D) crystals on top of each other--- have emerged as a new promising route to tailor and engineer the properties of 2D materials. Twisted bilayer graphene (tBLG),