ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovering Useful Compact Sets of Sequential Rules in a Long Sequence

53   0   0.0 ( 0 )
 نشر من قبل Luis Gal\\'arraga
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We are interested in understanding the underlying generation process for long sequences of symbolic events. To do so, we propose COSSU, an algorithm to mine small and meaningful sets of sequential rules. The rules are selected using an MDL-inspired criterion that favors compactness and relies on a novel rule-based encoding scheme for sequences. Our evaluation shows that COSSU can successfully retrieve relevant sets of closed sequential rules from a long sequence. Such rules constitute an interpretable model that exhibits competitive accuracy for the tasks of next-element prediction and classification.



قيم البحث

اقرأ أيضاً

The wealth of computerised medical information becoming readily available presents the opportunity to examine patterns of illnesses, therapies and responses. These patterns may be able to predict illnesses that a patient is likely to develop, allowin g the implementation of preventative actions. In this paper sequential rule mining is applied to a General Practice database to find rules involving a patients age, gender and medical history. By incorporating these rules into current health-care a patient can be highlighted as susceptible to a future illness based on past or current illnesses, gender and year of birth. This knowledge has the ability to greatly improve health-care and reduce health-care costs.
Reinforcement learning (RL) has advanced greatly in the past few years with the employment of effective deep neural networks (DNNs) on the policy networks. With the great effectiveness came serious vulnerability issues with DNNs that small adversaria l perturbations on the input can change the output of the network. Several works have pointed out that learned agents with a DNN policy network can be manipulated against achieving the original task through a sequence of small perturbations on the input states. In this paper, we demonstrate furthermore that it is also possible to impose an arbitrary adversarial reward on the victim policy network through a sequence of attacks. Our method involves the latest adversarial attack technique, Adversarial Transformer Network (ATN), that learns to generate the attack and is easy to integrate into the policy network. As a result of our attack, the victim agent is misguided to optimise for the adversarial reward over time. Our results expose serious security threats for RL applications in safety-critical systems including drones, medical analysis, and self-driving cars.
Sequential user behavior modeling plays a crucial role in online user-oriented services, such as product purchasing, news feed consumption, and online advertising. The performance of sequential modeling heavily depends on the scale and quality of his torical behaviors. However, the number of user behaviors inherently follows a long-tailed distribution, which has been seldom explored. In this work, we argue that focusing on tail users could bring more benefits and address the long tails issue by learning transferrable parameters from both optimization and feature perspectives. Specifically, we propose a gradient alignment optimizer and adopt an adversarial training scheme to facilitate knowledge transfer from the head to the tail. Such methods can also deal with the cold-start problem of new users. Moreover, it could be directly adaptive to various well-established sequential models. Extensive experiments on four real-world datasets verify the superiority of our framework compared with the state-of-the-art baselines.
Reinforcement learning (RL) algorithms have shown impressive success in exploring high-dimensional environments to learn complex, long-horizon tasks, but can often exhibit unsafe behaviors and require extensive environment interaction when exploratio n is unconstrained. A promising strategy for safe learning in dynamically uncertain environments is requiring that the agent can robustly return to states where task success (and therefore safety) can be guaranteed. While this approach has been successful in low-dimensions, enforcing this constraint in environments with high-dimensional state spaces, such as images, is challenging. We present Latent Space Safe Sets (LS3), which extends this strategy to iterative, long-horizon tasks with image observations by using suboptimal demonstrations and a learned dynamics model to restrict exploration to the neighborhood of a learned Safe Set where task completion is likely. We evaluate LS3 on 4 domains, including a challenging sequential pushing task in simulation and a physical cable routing task. We find that LS3 can use prior task successes to restrict exploration and learn more efficiently than prior algorithms while satisfying constraints. See https://tinyurl.com/latent-ss for code and supplementary material.
Option discovery and skill acquisition frameworks are integral to the functioning of a Hierarchically organized Reinforcement learning agent. However, such techniques often yield a large number of options or skills, which can potentially be represent ed succinctly by filtering out any redundant information. Such a reduction can reduce the required computation while also improving the performance on a target task. In order to compress an array of option policies, we attempt to find a policy basis that accurately captures the set of all options. In this work, we propose Option Encoder, an auto-encoder based framework with intelligently constrained weights, that helps discover a collection of basis policies. The policy basis can be used as a proxy for the original set of skills in a suitable hierarchically organized framework. We demonstrate the efficacy of our method on a collection of grid-worlds and on the high-dimensional Fetch-Reach robotic manipulation task by evaluating the obtained policy basis on a set of downstream tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا