ترغب بنشر مسار تعليمي؟ اضغط هنا

Option Encoder: A Framework for Discovering a Policy Basis in Reinforcement Learning

84   0   0.0 ( 0 )
 نشر من قبل Rahul Ramesh
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Option discovery and skill acquisition frameworks are integral to the functioning of a Hierarchically organized Reinforcement learning agent. However, such techniques often yield a large number of options or skills, which can potentially be represented succinctly by filtering out any redundant information. Such a reduction can reduce the required computation while also improving the performance on a target task. In order to compress an array of option policies, we attempt to find a policy basis that accurately captures the set of all options. In this work, we propose Option Encoder, an auto-encoder based framework with intelligently constrained weights, that helps discover a collection of basis policies. The policy basis can be used as a proxy for the original set of skills in a suitable hierarchically organized framework. We demonstrate the efficacy of our method on a collection of grid-worlds and on the high-dimensional Fetch-Reach robotic manipulation task by evaluating the obtained policy basis on a set of downstream tasks.



قيم البحث

اقرأ أيضاً

The options framework in reinforcement learning models the notion of a skill or a temporally extended sequence of actions. The discovery of a reusable set of skills has typically entailed building options, that navigate to bottleneck states. This wor k adopts a complementary approach, where we attempt to discover options that navigate to landmark states. These states are prototypical representatives of well-connected regions and can hence access the associated region with relative ease. In this work, we propose Successor Options, which leverages Successor Representations to build a model of the state space. The intra-option policies are learnt using a novel pseudo-reward and the model scales to high-dimensional spaces easily. Additionally, we also propose an Incremental Successor Options model that iterates between constructing Successor Representations and building options, which is useful when robust Successor Representations cannot be built solely from primitive actions. We demonstrate the efficacy of our approach on a collection of grid-worlds, and on the high-dimensional robotic control environment of Fetch.
In this paper, we present a new class of Markov decision processes (MDPs), called Tsallis MDPs, with Tsallis entropy maximization, which generalizes existing maximum entropy reinforcement learning (RL). A Tsallis MDP provides a unified framework for the original RL problem and RL with various types of entropy, including the well-known standard Shannon-Gibbs (SG) entropy, using an additional real-valued parameter, called an entropic index. By controlling the entropic index, we can generate various types of entropy, including the SG entropy, and a different entropy results in a different class of the optimal policy in Tsallis MDPs. We also provide a full mathematical analysis of Tsallis MDPs, including the optimality condition, performance error bounds, and convergence. Our theoretical result enables us to use any positive entropic index in RL. To handle complex and large-scale problems, we propose a model-free actor-critic RL method using Tsallis entropy maximization. We evaluate the regularization effect of the Tsallis entropy with various values of entropic indices and show that the entropic index controls the exploration tendency of the proposed method. For a different type of RL problems, we find that a different value of the entropic index is desirable. The proposed method is evaluated using the MuJoCo simulator and achieves the state-of-the-art performance.
Inverse reinforcement learning (IRL) is the problem of learning the preferences of an agent from the observations of its behavior on a task. While this problem has been well investigated, the related problem of {em online} IRL---where the observation s are incrementally accrued, yet the demands of the application often prohibit a full rerun of an IRL method---has received relatively less attention. We introduce the first formal framework for online IRL, called incremental IRL (I2RL), and a new method that advances maximum entropy IRL with hidden variables, to this setting. Our formal analysis shows that the new method has a monotonically improving performance with more demonstration data, as well as probabilistically bounded error, both under full and partial observability. Experiments in a simulated robotic application of penetrating a continuous patrol under occlusion shows the relatively improved performance and speed up of the new method and validates the utility of online IRL.
Reinforcement learning with function approximation can be unstable and even divergent, especially when combined with off-policy learning and Bellman updates. In deep reinforcement learning, these issues have been dealt with empirically by adapting an d regularizing the representation, in particular with auxiliary tasks. This suggests that representation learning may provide a means to guarantee stability. In this paper, we formally show that there are indeed nontrivial state representations under which the canonical TD algorithm is stable, even when learning off-policy. We analyze representation learning schemes that are based on the transition matrix of a policy, such as proto-value functions, along three axes: approximation error, stability, and ease of estimation. In the most general case, we show that a Schur basis provides convergence guarantees, but is difficult to estimate from samples. For a fixed reward function, we find that an orthogonal basis of the corresponding Krylov subspace is an even better choice. We conclude by empirically demonstrating that these stable representations can be learned using stochastic gradient descent, opening the door to improved techniques for representation learning with deep networks.
OpenSpiel is a collection of environments and algorithms for research in general reinforcement learning and search/planning in games. OpenSpiel supports n-player (single- and multi- agent) zero-sum, cooperative and general-sum, one-shot and sequentia l, strictly turn-taking and simultaneous-move, perfect and imperfect information games, as well as traditional multiagent environments such as (partially- and fully- observable) grid worlds and social dilemmas. OpenSpiel also includes tools to analyze learning dynamics and other common evaluation metrics. This document serves both as an overview of the code base and an introduction to the terminology, core concepts, and algorithms across the fields of reinforcement learning, computational game theory, and search.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا