ﻻ يوجد ملخص باللغة العربية
A Lattice is a partially ordered set where both least upper bound and greatest lower bound of any pair of elements are unique and exist within the set. K{o}tter and Kschischang proved that codes in the linear lattice can be used for error and erasure-correction in random networks. Codes in the linear lattice have previously been shown to be special cases of codes in modular lattices. Two well known classifications of modular lattices are geometric and distributive lattices. We have identified the unique criterion which makes a geometric lattice distributive, thus characterizing all finite geometric distributive lattices. Our characterization helps to prove a conjecture regarding the maximum size of a distributive sublattice of a finite geometric lattice and identify the maximal case. The Whitney numbers of the class of geometric distributive lattices are also calculated. We present a few other applications of this unique characterization to derive certain results regarding linearity and complements in the linear lattice.
In the group testing problem the aim is to identify a small set of $ksim n^theta$ infected individuals out of a population size $n$, $0<theta<1$. We avail ourselves of a test procedure capable of testing groups of individuals, with the test returning
We introduce Forman-Ricci curvature and its corresponding flow as characteristics for complex networks attempting to extend the common approach of node-based network analysis by edge-based characteristics. Following a theoretical introduction and mat
There is a rich connection between classical error-correcting codes, Euclidean lattices, and chiral conformal field theories. Here we show that quantum error-correcting codes, those of the stabilizer type, are related to Lorentzian lattices and non-c
A drawing of a graph in the plane is a thrackle if every pair of edges intersects exactly once, either at a common vertex or at a proper crossing. Conways conjecture states that a thrackle has at most as many edges as vertices. In this paper, we inve
Let $X_i, i in V$ form a Markov random field (MRF) represented by an undirected graph $G = (V,E)$, and $V$ be a subset of $V$. We determine the smallest graph that can always represent the subfield $X_i, i in V$ as an MRF. Based on this result, we