ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing Complex Networks with Forman-Ricci Curvature and Associated Geometric Flows

109   0   0.0 ( 0 )
 نشر من قبل Melanie Weber
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce Forman-Ricci curvature and its corresponding flow as characteristics for complex networks attempting to extend the common approach of node-based network analysis by edge-based characteristics. Following a theoretical introduction and mathematical motivation, we apply the proposed network-analytic methods to static and dynamic complex networks and compare the results with established node-based characteristics. Our work suggests a number of applications for data mining, including denoising and clustering of experimental data, as well as extrapolation of network evolution.



قيم البحث

اقرأ أيضاً

124 - Emil Saucan , Melanie Weber 2018
Networks and their higher order generalizations, such as hypernetworks or multiplex networks are ever more popular models in the applied sciences. However, methods developed for the study of their structural properties go little beyond the common nam e and the heavy reliance of combinatorial tools. We show that, in fact, a geometric unifying approach is possible, by viewing them as polyhedral complexes endowed with a simple, yet, the powerful notion of curvature - the Forman Ricci curvature. We systematically explore some aspects related to the modeling of weighted and directed hypernetworks and present expressive and natural choices involved in their definitions. A benefit of this approach is a simple method of structure-preserving embedding of hypernetworks in Euclidean N-space. Furthermore, we introduce a simple and efficient manner of computing the well established Ollivier-Ricci curvature of a hypernetwork.
Recently, real world networks having constant/shrinking diameter along with power-law degree distribution are observed and investigated in literature. Taking an inspiration from these findings, we propose a deterministic complex network model, which we call Self-Coordinated Corona Graphs (SCCG), based on the corona product of graphs. As it has also been established that self coordination/organization of nodes gives rise to emergence of power law in degree distributions of several real networks, the networks in the proposed model are generated by the virtue of self coordination of nodes in corona graphs. Alike real networks, the SCCG inherit motifs which act as the seed graphs for the generation of SCCG. We also analytically prove that the power law exponent of SCCG is approximately $2$ and the diameter of SCCG produced by a class of motifs is constant. Finally, we compare different properties of the proposed model with that of the BA and Pseudofractal scale-free models for complex networks.
Cycle is the simplest structure that brings redundant paths in network connectivity and feedback effects in network dynamics. Focusing on cycle structure, this paper defines a new matrix, named cycle number matrix, to represent cycle information of a network, and an index, named cycle ratio, to quantify the node importance. Experiments on real networks suggest that cycle ratio contains rich information in addition to well-known benchmark indices, for example, the node rankings by cycle ratio are largely different from rankings by degree, H-index, coreness, betweenness and articulation ranking, while the rankings by degree, H-index, coreness are very similar to each other. Extensive experiments on identifying vital nodes that maintain network connectivity, facilitate network synchronization and maximize the early reach of spreading show that cycle ratio is competitive to betweenness and overall better than other benchmarks. We believe the in-depth analyses on cycle structure may yield novel insights, metrics, models and algorithms for network science.
99 - Richard H. Bamler 2016
In this paper we prove convergence and compactness results for Ricci flows with bounded scalar curvature and entropy. More specifically, we show that Ricci flows with bounded scalar curvature converge smoothly away from a singular set of codimension $geq 4$. We also establish a general form of the Hamilton-Tian Conjecture, which is even true in the Riemannian case. These results are based on a compactness theorem for Ricci flows with bounded scalar curvature, which states that any sequence of such Ricci flows converges, after passing to a subsequence, to a metric space that is smooth away from a set of codimension $geq 4$. In the course of the proof, we will also establish $L^{p < 2}$-curvature bounds on time-slices of such flows.
Many graph products have been applied to generate complex networks with striking properties observed in real-world systems. In this paper, we propose a simple generative model for simplicial networks by iteratively using edge corona product. We prese nt a comprehensive analysis of the structural properties of the network model, including degree distribution, diameter, clustering coefficient, as well as distribution of clique sizes, obtaining explicit expressions for these relevant quantities, which agree with the behaviors found in diverse real networks. Moreover, we obtain exact expressions for all the eigenvalues and their associated multiplicities of the normalized Laplacian matrix, based on which we derive explicit formulas for mixing time, mean hitting time and the number of spanning trees. Thus, as previous models generated by other graph products, our model is also an exactly solvable one, whose structural properties can be analytically treated. More interestingly, the expressions for the spectra of our model are also exactly determined, which is sharp contrast to previous models whose spectra can only be given recursively at most. This advantage makes our model a good test-bed and an ideal substrate network for studying dynamical processes, especially those closely related to the spectra of normalized Laplacian matrix, in order to uncover the influences of simplicial structure on these processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا