ﻻ يوجد ملخص باللغة العربية
Quality Estimation (QE) plays an essential role in applications of Machine Translation (MT). Traditionally, a QE system accepts the original source text and translation from a black-box MT system as input. Recently, a few studies indicate that as a by-product of translation, QE benefits from the model and training datas information of the MT system where the translations come from, and it is called the glass-box QE. In this paper, we extend the definition of glass-box QE generally to uncertainty quantification with both black-box and glass-box approaches and design several features deduced from them to blaze a new trial in improving QEs performance. We propose a framework to fuse the feature engineering of uncertainty quantification into a pre-trained cross-lingual language model to predict the translation quality. Experiment results show that our method achieves state-of-the-art performances on the datasets of WMT 2020 QE shared task.
Sentence level quality estimation (QE) for machine translation (MT) attempts to predict the translation edit rate (TER) cost of post-editing work required to correct MT output. We describe our view on sentence-level QE as dictated by several practica
Machine Translation Quality Estimation (QE) is a task of predicting the quality of machine translations without relying on any reference. Recently, the predictor-estimator framework trains the predictor as a feature extractor, which leverages the ext
As a sequence-to-sequence generation task, neural machine translation (NMT) naturally contains intrinsic uncertainty, where a single sentence in one language has multiple valid counterparts in the other. However, the dominant methods for NMT only obs
We introduce ChrEnTranslate, an online machine translation demonstration system for translation between English and an endangered language Cherokee. It supports both statistical and neural translation models as well as provides quality estimation to
Prior work has proved that Translation memory (TM) can boost the performance of Neural Machine Translation (NMT). In contrast to existing work that uses bilingual corpus as TM and employs source-side similarity search for memory retrieval, we propose