ترغب بنشر مسار تعليمي؟ اضغط هنا

DirectQE: Direct Pretraining for Machine Translation Quality Estimation

85   0   0.0 ( 0 )
 نشر من قبل Qu Cui
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Machine Translation Quality Estimation (QE) is a task of predicting the quality of machine translations without relying on any reference. Recently, the predictor-estimator framework trains the predictor as a feature extractor, which leverages the extra parallel corpora without QE labels, achieving promising QE performance. However, we argue that there are gaps between the predictor and the estimator in both data quality and training objectives, which preclude QE models from benefiting from a large number of parallel corpora more directly. We propose a novel framework called DirectQE that provides a direct pretraining for QE tasks. In DirectQE, a generator is trained to produce pseudo data that is closer to the real QE data, and a detector is pretrained on these data with novel objectives that are akin to the QE task. Experiments on widely used benchmarks show that DirectQE outperforms existing methods, without using any pretraining models such as BERT. We also give extensive analyses showing how fixing the two gaps contributes to our improvements.



قيم البحث

اقرأ أيضاً

Sentence level quality estimation (QE) for machine translation (MT) attempts to predict the translation edit rate (TER) cost of post-editing work required to correct MT output. We describe our view on sentence-level QE as dictated by several practica l setups encountered in the industry. We find consumers of MT output---whether human or algorithmic ones---to be primarily interested in a binary quality metric: is the translated sentence adequate as-is or does it need post-editing? Motivated by this we propose a quality classification (QC) view on sentence-level QE whereby we focus on maximizing recall at precision above a given threshold. We demonstrate that, while classical QE regression models fare poorly on this task, they can be re-purposed by replacing the output regression layer with a binary classification one, achieving 50-60% recall at 90% precision. For a high-quality MT system producing 75-80% correct translations, this promises a significant reduction in post-editing work indeed.
107 - Ke Wang , Yangbin Shi , Jiayi Wang 2021
Quality Estimation (QE) plays an essential role in applications of Machine Translation (MT). Traditionally, a QE system accepts the original source text and translation from a black-box MT system as input. Recently, a few studies indicate that as a b y-product of translation, QE benefits from the model and training datas information of the MT system where the translations come from, and it is called the glass-box QE. In this paper, we extend the definition of glass-box QE generally to uncertainty quantification with both black-box and glass-box approaches and design several features deduced from them to blaze a new trial in improving QEs performance. We propose a framework to fuse the feature engineering of uncertainty quantification into a pre-trained cross-lingual language model to predict the translation quality. Experiment results show that our method achieves state-of-the-art performances on the datasets of WMT 2020 QE shared task.
Recent studies have demonstrated a perceivable improvement on the performance of neural machine translation by applying cross-lingual language model pretraining (Lample and Conneau, 2019), especially the Translation Language Modeling (TLM). To allevi ate the need for expensive parallel corpora by TLM, in this work, we incorporate the translation information from dictionaries into the pretraining process and propose a novel Bilingual Dictionary-based Language Model (BDLM). We evaluate our BDLM in Chinese, English, and Romanian. For Chinese-English, we obtained a 55.0 BLEU on WMT-News19 (Tiedemann, 2012) and a 24.3 BLEU on WMT20 news-commentary, outperforming the Vanilla Transformer (Vaswani et al., 2017) by more than 8.4 BLEU and 2.3 BLEU, respectively. According to our results, the BDLM also has advantages on convergence speed and predicting rare words. The increase in BLEU for WMT16 Romanian-English also shows its effectiveness in low-resources language translation.
We introduce ChrEnTranslate, an online machine translation demonstration system for translation between English and an endangered language Cherokee. It supports both statistical and neural translation models as well as provides quality estimation to inform users of reliability, two user feedback interfaces for experts and common users respectively, example inputs to collect human translations for monolingual data, word alignment visualization, and relevant terms from the Cherokee-English dictionary. The quantitative evaluation demonstrates that our backbone translation models achieve state-of-the-art translation performance and our quality estimation well correlates with both BLEU and human judgment. By analyzing 216 pieces of expert feedback, we find that NMT is preferable because it copies less than SMT, and, in general, current models can translate fragments of the source sentence but make major mistakes. When we add these 216 expert-corrected parallel texts back into the training set and retrain models, equal or slightly better performance is observed, which indicates the potential of human-in-the-loop learning. Our online demo is at https://chren.cs.unc.edu/ , our code is open-sourced at https://github.com/ZhangShiyue/ChrEnTranslate , and our data is available at https://github.com/ZhangShiyue/ChrEn
The paper investigates the feasibility of confidence estimation for neural machine translation models operating at the high end of the performance spectrum. As a side product of the data annotation process necessary for building such models we propos e sentence level accuracy $SACC$ as a simple, self-explanatory evaluation metric for quality of translation. Experiments on two different annotator pools, one comprised of non-expert (crowd-sourced) and one of expert (professional) translators show that $SACC$ can vary greatly depending on the translation proficiency of the annotators, despite the fact that both pools are about equally reliable according to Krippendorffs alpha metric; the relatively low values of inter-annotator agreement confirm the expectation that sentence-level binary labeling $good$ / $needs work$ for translation out of context is very hard. For an English-Spanish translation model operating at $SACC = 0.89$ according to a non-expert annotator pool we can derive a confidence estimate that labels 0.5-0.6 of the $good$ translations in an in-domain test set with 0.95 Precision. Switching to an expert annotator pool decreases $SACC$ dramatically: $0.61$ for English-Spanish, measured on the exact same data as above. This forces us to lower the CE model operating point to 0.9 Precision while labeling correctly about 0.20-0.25 of the $good$ translations in the data. We find surprising the extent to which CE depends on the level of proficiency of the annotator pool used for labeling the data. This leads to an important recommendation we wish to make when tackling CE modeling in practice: it is critical to match the end-user expectation for translation quality in the desired domain with the demands of annotators assigning binary quality labels to CE training data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا