ﻻ يوجد ملخص باللغة العربية
In this work, we employ the $bar{partial}$-steepest descent method to investigate the Cauchy problem of the Wadati-Konno-Ichikawa (WKI) equation with initial conditions in weighted Sobolev space $mathcal{H}(mathbb{R})$. The long time asymptotic behavior of the solution $q(x,t)$ is derived in a fixed space-time cone $S(y_{1},y_{2},v_{1},v_{2})={(y,t)inmathbb{R}^{2}: y=y_{0}+vt, ~y_{0}in[y_{1},y_{2}], ~vin[v_{1},v_{2}]}$. Based on the resulting asymptotic behavior, we prove the soliton resolution conjecture of the WKI equation which includes the soliton term confirmed by $N(mathcal{I})$-soliton on discrete spectrum and the $t^{-frac{1}{2}}$ order term on continuous spectrum with residual error up to $O(t^{-frac{3}{4}})$.
In this work, we investigate the long-time asymptotic behavior of the Wadati-Konno-Ichikawa equation with initial data belonging to Schwartz space at infinity by using the nonlinear steepest descent method of Deift and Zhou for the oscillatory Rieman
In this work, we investigate the Cauchy problem of the Wadati-Konno-Ichikawa (WKI) equation with finite density initial data. Employing the $bar{partial}$-generalization of Deift-Zhou nonlinear steepest descent method, we derive the long time asympto
In this work, the $overline{partial}$ steepest descent method is employed to investigate the soliton resolution for the Hirota equation with the initial value belong to weighted Sobolev space $H^{1,1}(mathbb{R})={fin L^{2}(mathbb{R}): f,xfin L^{2}(ma
The soliton resolution for the Harry Dym equation is established for initial conditions in weighted Sobolev space $H^{1,1}(mathbb{R})$. Combining the nonlinear steepest descent method and $bar{partial}$-derivatives condition, we obtain that when $fra
We employ the $bar{partial}$-steepest descent method in order to investigate the Cauchy problem of the complex short pulse (CSP) equation with initial conditions in weighted Sobolev space $H^{1,1}(mathbb{R})={fin L^{2}(mathbb{R}): f,xfin L^{2}(mathbb