ﻻ يوجد ملخص باللغة العربية
We employ the $bar{partial}$-steepest descent method in order to investigate the Cauchy problem of the complex short pulse (CSP) equation with initial conditions in weighted Sobolev space $H^{1,1}(mathbb{R})={fin L^{2}(mathbb{R}): f,xfin L^{2}(mathbb{R})}$. The long time asymptotic behavior of the solution $u(x,t)$ is derived in a fixed space-time cone $S(x_{1},x_{2},v_{1},v_{2})={(x,t)inmathbb{R}^{2}: y=y_{0}+vt, ~y_{0}in[y_{1},y_{2}], ~vin[v_{1},v_{2}]}$. Based on the resulting asymptotic behavior, we prove the solution resolution conjecture of the CSP equation which includes the soliton term confirmed by $N(I)$-soliton on discrete spectrum and the $t^{-frac{1}{2}}$ order term on continuous spectrum with residual error up to $O(t^{-1})$.
In this work, the $overline{partial}$ steepest descent method is employed to investigate the soliton resolution for the Hirota equation with the initial value belong to weighted Sobolev space $H^{1,1}(mathbb{R})={fin L^{2}(mathbb{R}): f,xfin L^{2}(ma
The soliton resolution for the Harry Dym equation is established for initial conditions in weighted Sobolev space $H^{1,1}(mathbb{R})$. Combining the nonlinear steepest descent method and $bar{partial}$-derivatives condition, we obtain that when $fra
In this work, we employ the $bar{partial}$ steepest descent method in order to study the Cauchy problem of the cgNLS equations with initial conditions in weighted Sobolev space $H^{1,1}(mathbb{R})={fin L^{2}(mathbb{R}): f,xfin L^{2}(mathbb{R})}$. The
In this work, we employ the $bar{partial}$-steepest descent method to investigate the Cauchy problem of the Wadati-Konno-Ichikawa (WKI) equation with initial conditions in weighted Sobolev space $mathcal{H}(mathbb{R})$. The long time asymptotic behav
In the present paper, we study the defocusing complex short pulse (CSP) equations both geometrically and algebraically. From the geometric point of view, we establish a link of the complex coupled dispersionless (CCD) system with the motion of space