ترغب بنشر مسار تعليمي؟ اضغط هنا

Data Hunches: Incorporating Personal Knowledge into Visualizations

251   0   0.0 ( 0 )
 نشر من قبل Haihan Lin
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The trouble with data is that often it provides only an imperfect representation of the phenomenon of interest. When reading and interpreting data, personal knowledge about the data plays an important role. Data visualization, however, has neither a concept defining personal knowledge about datasets, nor the methods or tools to robustly integrate them into an analysis process, thus hampering analysts ability to express their personal knowledge about datasets, and others to learn from such knowledge. In this work, we define such personal knowledge about datasets as data hunches and elevate this knowledge to another form of data that can be externalized, visualized, and used for collaboration. We establish the implications of data hunches and provide a design space for externalizing and communicating data hunches through visualization techniques. We envision such a design space will empower users to externalize their personal knowledge and support the ability to learn from others data hunches.



قيم البحث

اقرأ أيضاً

Many AutoML problems involve optimizing discrete objects under a black-box reward. Neural-guided search provides a flexible means of searching these combinatorial spaces using an autoregressive recurrent neural network. A major benefit of this approa ch is that builds up objects sequentially--this provides an opportunity to incorporate domain knowledge into the search by directly modifying the logits emitted during sampling. In this work, we formalize a framework for incorporating such in situ priors and constraints into neural-guided search, and provide sufficient conditions for enforcing constraints. We integrate several priors and constraints from existing works into this framework, propose several new ones, and demonstrate their efficacy in informing the task of symbolic regression.
The verification community has studied dynamic data structures primarily in a bottom-up way by analyzing pointers and the shapes induced by them. Recent work in fields such as separation logic has made significant progress in extracting shapes from p rogram source code. Many real world programs however manipulate complex data whose structure and content is most naturally described by formalisms from object oriented programming and databases. In this paper, we look at the verification of programs with dynamic data structures from the perspective of content representation. Our approach is based on description logic, a widely used knowledge representation paradigm which gives a logical underpinning for diverse modeling frameworks such as UML and ER. Technically, we assume that we have separation logic shape invariants obtained from a shape analysis tool, and requirements on the program data in terms of description logic. We show that the two-variable fragment of first order logic with counting and trees %(whose decidability was proved at LICS 2013) can be used as a joint framework to embed suitable fragments of description logic and separation logic.
In this paper, we extend graph-based identification methods by allowing background knowledge in the form of non-zero parameter values. Such information could be obtained, for example, from a previously conducted randomized experiment, from substantiv e understanding of the domain, or even an identification technique. To incorporate such information systematically, we propose the addition of auxiliary variables to the model, which are constructed so that certain paths will be conveniently cancelled. This cancellation allows the auxiliary variables to help conventional methods of identification (e.g., single-door criterion, instrumental variables, half-trek criterion), as well as model testing (e.g., d-separation, over-identification). Moreover, by iteratively alternating steps of identification and adding auxiliary variables, we can improve the power of existing identification methods via a bootstrapping approach that does not require external knowledge. We operationalize this method for simple instrumental sets (a generalization of instrumental variables) and show that the resulting method is able to identify at least as many models as the most general identification method for linear systems known to date. We further discuss the application of auxiliary variables to the tasks of model testing and z-identification.
Traditionally, the regime of mental healthcare has followed an episodic psychotherapy model wherein patients seek care from a provider through a prescribed treatment plan developed over multiple provider visits. Recent advances in wearable and mobile technology have generated increased interest in digital mental healthcare that enables individuals to address episodic mental health symptoms. However, these efforts are typically reactive and symptom-focused and do not provide comprehensive, wrap-around, customized treatments that capture an individuals holistic mental health model as it unfolds over time. Recognizing that each individual is unique, we present the notion of Personalized Mental Health Navigation (MHN): a therapist-in-the-loop, cybernetic goal-based system that deploys a continuous cyclic loop of measurement, estimation, guidance, to steer the individuals mental health state towards a healthy zone. We outline the major components of MHN that is premised on the development of an individuals personal mental health state, holistically represented by a high-dimensional cover of multiple knowledge layers such as emotion, biological patterns, sociology, behavior, and cognition. We demonstrate the feasibility of the personalized MHN approach via a 12-month pilot case study for holistic stress management in college students and highlight an instance of a therapist-in-the-loop intervention using MHN for monitoring, estimating, and proactively addressing moderately severe depression over a sustained period of time. We believe MHN paves the way to transform mental healthcare from the current passive, episodic, reactive process (where individuals seek help to address symptoms that have already manifested) to a continuous and navigational paradigm that leverages a personalized model of the individual, promising to deliver timely interventions to individuals in a holistic manner.
Personal Information Management (PIM) refers to the practice and the study of the activities a person performs in order to acquire or create, store, organize, maintain, retrieve, use, and distribute information in each of its many forms (paper and di gital, in e-mails, files, Web pages, text messages, tweets, posts, etc.) as needed to meet lifes many goals (everyday and long-term, work-related and not) and to fulfill lifes many roles and responsibilities (as parent, spouse, friend, employee, member of community, etc.). PIM activities are an effort to establish, use, and maintain a mapping between information and need. Activities of finding (and re-finding) move from a current need toward information while activities of keeping move from encountered information toward anticipated need. Meta-level activities such as maintaining, organizing, and managing the flow of information focus on the mapping itself. Tools and techniques of PIM can promote information integration with benefits for each kind of PIM activity and across the life cycle of personal information. Understanding how best to accomplish this integration without inadvertently creating problems along the way is a key challenge of PIM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا