ترغب بنشر مسار تعليمي؟ اضغط هنا

Personal Mental Health Navigator: Harnessing the Power of Data, Personal Models, and Health Cybernetics to Promote Psychological Well-being

129   0   0.0 ( 0 )
 نشر من قبل Amir M. Rahmani
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Traditionally, the regime of mental healthcare has followed an episodic psychotherapy model wherein patients seek care from a provider through a prescribed treatment plan developed over multiple provider visits. Recent advances in wearable and mobile technology have generated increased interest in digital mental healthcare that enables individuals to address episodic mental health symptoms. However, these efforts are typically reactive and symptom-focused and do not provide comprehensive, wrap-around, customized treatments that capture an individuals holistic mental health model as it unfolds over time. Recognizing that each individual is unique, we present the notion of Personalized Mental Health Navigation (MHN): a therapist-in-the-loop, cybernetic goal-based system that deploys a continuous cyclic loop of measurement, estimation, guidance, to steer the individuals mental health state towards a healthy zone. We outline the major components of MHN that is premised on the development of an individuals personal mental health state, holistically represented by a high-dimensional cover of multiple knowledge layers such as emotion, biological patterns, sociology, behavior, and cognition. We demonstrate the feasibility of the personalized MHN approach via a 12-month pilot case study for holistic stress management in college students and highlight an instance of a therapist-in-the-loop intervention using MHN for monitoring, estimating, and proactively addressing moderately severe depression over a sustained period of time. We believe MHN paves the way to transform mental healthcare from the current passive, episodic, reactive process (where individuals seek help to address symptoms that have already manifested) to a continuous and navigational paradigm that leverages a personalized model of the individual, promising to deliver timely interventions to individuals in a holistic manner.



قيم البحث

اقرأ أيضاً

Secure and privacy-preserving management of Personal Health Records (PHRs) has proved to be a major challenge in modern healthcare. Current solutions generally do not offer patients a choice in where the data is actually stored and also rely on at le ast one fully trusted element that patients must also trust with their data. In this work, we present the Health Access Broker (HAB), a patient-controlled service for secure PHR sharing that (a) does not impose a specific storage location (uniquely for a PHR system), and (b) does not assume any of its components to be fully secure against adversarial threats. Instead, HAB introduces a novel auditing and intrusion-detection mechanism where its workflow is securely logged and continuously inspected to provide auditability of data access and quickly detect any intrusions.
107 - Huitong Ding , Chi Zhang , Ning An 2020
Objective: This paper gives context on recent literature regarding the development of digital personal health libraries (PHL) and provides insights into the potential application of consumer health informatics in diverse clinical specialties. Materia ls and Methods: A systematic literature review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Here, 2,850 records were retrieved from PubMed and EMBASE in March 2020 using search terms: personal, health, and library. Information related to the health topic, target population, study purpose, library function, data source, data science method, evaluation measure, and status were extracted from each eligible study. In addition, knowledge discovery methods, including co-occurrence analysis and multiple correspondence analysis, were used to explore research trends of PHL. Results: After screening, this systematic review focused on a dozen articles related to PHL. These encompassed health topics such as infectious diseases, congestive heart failure, electronic prescribing. Data science methods included relational database, information retrieval technology, ontology construction technology. Evaluation measures were heterogeneous regarding PHL functions and settings. At the time of writing, only one of the PHLs described in these articles is available for the public while the others are either prototypes or in the pilot stage. Discussion: Although PHL researches have used different methods to address problems in diverse health domains, there is a lack of an effective PHL to meet the needs of older adults. Conclusion: The development of PHLs may create an unprecedented opportunity for promoting the health of older consumers by providing diverse health information.
The recent growth of digital interventions for mental well-being prompts a call-to-arms to explore the delivery of personalised recommendations from a users perspective. In a randomised placebo study with a two-way factorial design, we analysed the d ifference between an autonomous user experience as opposed to personalised guidance, with respect to both users preference and their actual usage of a mental well-being app. Furthermore, we explored users preference in sharing their data for receiving personalised recommendations, by juxtaposing questionnaires and mobile sensor data. Interestingly, self-reported results indicate the preference for personalised guidance, whereas behavioural data suggests that a blend of autonomous choice and recommended activities results in higher engagement. Additionally, although users reported a strong preference of filling out questionnaires instead of sharing their mobile data, the data source did not have any impact on the actual app use. We discuss the implications of our findings and provide takeaways for designers of mental well-being applications.
Many people struggling with mental health issues are unable to access adequate care due to high costs and a shortage of mental health professionals, leading to a global mental health crisis. Online mental health communities can help mitigate this cri sis by offering a scalable, easily accessible alternative to in-person sessions with therapists or support groups. However, people seeking emotional or psychological support online may be especially vulnerable to the kinds of antisocial behavior that sometimes occur in online discussions. Moderation can improve online discourse quality, but we lack an understanding of its effects on online mental health conversations. In this work, we leveraged a natural experiment, occurring across 200,000 messages from 7,000 online mental health conversations, to evaluate the effects of moderation on online mental health discussions. We found that participation in group mental health discussions led to improvements in psychological perspective, and that these improvements were larger in moderated conversations. The presence of a moderator increased user engagement, encouraged users to discuss negative emotions more candidly, and dramatically reduced bad behavior among chat participants. Moderation also encouraged stronger linguistic coordination, which is indicative of trust building. In addition, moderators who remained active in conversations were especially successful in keeping conversations on topic. Our findings suggest that moderation can serve as a valuable tool to improve the efficacy and safety of online mental health conversations. Based on these findings, we discuss implications and trade-offs involved in designing effective online spaces for mental health support.
In cognitive psychology, automatic and self-reinforcing irrational thought patterns are known as cognitive distortions. Left unchecked, patients exhibiting these types of thoughts can become stuck in negative feedback loops of unhealthy thinking, lea ding to inaccurate perceptions of reality commonly associated with anxiety and depression. In this paper, we present a machine learning framework for the automatic detection and classification of 15 common cognitive distortions in two novel mental health free text datasets collected from both crowdsourcing and a real-world online therapy program. When differentiating between distorted and non-distorted passages, our model achieved a weighted F1 score of 0.88. For classifying distorted passages into one of 15 distortion categories, our model yielded weighted F1 scores of 0.68 in the larger crowdsourced dataset and 0.45 in the smaller online counseling dataset, both of which outperformed random baseline metrics by a large margin. For both tasks, we also identified the most discriminative words and phrases between classes to highlight common thematic elements for improving targeted and therapist-guided mental health treatment. Furthermore, we performed an exploratory analysis using unsupervised content-based clustering and topic modeling algorithms as first efforts towards a data-driven perspective on the thematic relationship between similar cognitive distortions traditionally deemed unique. Finally, we highlight the difficulties in applying mental health-based machine learning in a real-world setting and comment on the implications and benefits of our framework for improving automated delivery of therapeutic treatment in conjunction with traditional cognitive-behavioral therapy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا