ﻻ يوجد ملخص باللغة العربية
To overcome incompatibility issues, kidney patients may swap their donors. In international kidney exchange programmes (IKEPs), countries merge their national patient-donor pools. We consider a recent credit system where in each round, countries are given an initial kidney transplant allocation which is adjusted by a credit function yielding a target allocation. The goal is to find a solution in the patient-donor compatibility graph that approaches the target allocation as closely as possible, to ensure long-term stability of the international pool. As solutions, we use maximum matchings that lexicographically minimize the country deviations from the target allocation. We first give a polynomial-time algorithm for computing such matchings. We then perform, for the first time, a computational study for a large number of countries. For the initial allocations we use, besides two easy-to-compute solution concepts, two classical concepts: the Shapley value and nucleolus. These are hard to compute, but by using state-of-the-art software we show that they are now within reach for IKEPs of up to fifteen countries. Our experiments show that using lexicographically minimal maximum matchings instead of ones that only minimize the largest deviation from the target allocation (as previously done) may make an IKEP up to 52% more balanced.
In kidney exchange programmes patients with end-stage renal failure may exchange their willing, but incompatible living donors among each other. National kidney exchange programmes are in operation in ten European countries, and some of them have alr
Algorithms for exchange of kidneys is one of the key successful applications in market design, artificial intelligence, and operations research. Potent immunosuppressant drugs suppress the bodys ability to reject a transplanted organ up to the point
Motivated by kidney exchange, we study the following mechanism-design problem: On a directed graph (of transplant compatibilities among patient-donor pairs), the mechanism must select a simple path (a chain of transplantations) starting at a distingu
The study of approximate mechanism design for facility location problems has been in the center of research at the intersection of artificial intelligence and economics for the last decades, largely due to its practical importance in various domains,
Inspired by real world examples, e.g. the Internet, researchers have introduced an abundance of strategic games to study natural phenomena in networks. Unfortunately, almost all of these games have the conceptual drawback of being computationally int