ﻻ يوجد ملخص باللغة العربية
Motivated by kidney exchange, we study the following mechanism-design problem: On a directed graph (of transplant compatibilities among patient-donor pairs), the mechanism must select a simple path (a chain of transplantations) starting at a distinguished vertex (an altruistic donor) such that the total length of this path is as large as possible (a maximum number of patients receive a kidney). However, the mechanism does not have direct access to the graph. Instead, the vertices are partitioned over multiple players (hospitals), and each player reports a subset of her vertices to the mechanism. In particular, a player may strategically omit vertices to increase how many of her vertices lie on the path returned by the mechanism. Our objective is to find mechanisms that limit incentives for such manipulation while producing long paths. Unfortunately, in worst-case instances, competing with the overall longest path is impossible while incentivizing (approximate) truthfulness, i.e., requiring that hiding nodes cannot increase a players utility by more than a factor of $1 + o(1)$. We therefore adopt a semi-random model where a small ($o(n)$) number of random edges are added to worst-case instances. While it remains impossible for truthful mechanisms to compete with the overall longest path, we give a truthful mechanism that competes with a weaker but non-trivial benchmark: the length of any path whose subpaths within each player have a minimum average length. In fact, our mechanism satisfies even a stronger notion of truthfulness, which we call matching-time incentive compatibility. This notion of truthfulness requires that each player not only reports her nodes truthfully but also does not stop the returned path at any of her nodes in order to divert it to a continuation inside her own subgraph.
Individual decision-makers consume information revealed by the previous decision makers, and produce information that may help in future decisions. This phenomenon is common in a wide range of scenarios in the Internet economy, as well as in other do
Selecting the most influential agent in a network has huge practical value in applications. However, in many scenarios, the graph structure can only be known from agents reports on their connections. In a self-interested setting, agents may strategic
Algorithms for exchange of kidneys is one of the key successful applications in market design, artificial intelligence, and operations research. Potent immunosuppressant drugs suppress the bodys ability to reject a transplanted organ up to the point
To overcome incompatibility issues, kidney patients may swap their donors. In international kidney exchange programmes (IKEPs), countries merge their national patient-donor pools. We consider a recent credit system where in each round, countries are
We consider a well-studied online random graph model for kidney exchange, where nodes representing patient-donor pairs arrive over time, and the probability of a directed edge is p. We assume existence of a single altruistic donor, who serves as a st