ﻻ يوجد ملخص باللغة العربية
In this note we prove the uniqueness of solutions to a class of Mean Field Games systems subject to possibly degenerate individual noise. Our results hold true for arbitrary long time horizons and for general non-separable Hamiltonians that satisfy a so-called $displacement monotonicity$ condition. Ours are the first global in time uniqueness results, beyond the well-known Lasry-Lions monotonicity condition, for the Mean Field Games systems involving non-separable Hamiltonians. The displacement monotonicity assumptions imposed on the data provide actually not only uniqueness, but also the existence and regularity of the solutions.
In this manuscript, we propose a structural condition on non-separable Hamiltonians, which we term displacement monotonicity condition, to study second order mean field games master equations. A rate of dissipation of a bilinear form is brought to be
We study first order evolutive Mean Field Games where the Hamiltonian is non-coercive. This situation occurs, for instance, when some directions are forbidden to the generic player at some points. We establish the existence of a weak solution of the
This work establishes the equivalence between Mean Field Game and a class of compressible Navier-Stokes equations for their connections by Hamilton-Jacobi-Bellman equations. The existence of the Nash Equilibrium of the Mean Field Game, and hence the
In the present work, we study deterministic mean field games (MFGs) with finite time horizon in which the dynamics of a generic agent is controlled by the acceleration. They are described by a system of PDEs coupling a continuity equation for the den
We study the asymptotic behavior of solutions to the constrained MFG system as the time horizon $T$ goes to infinity. For this purpose, we analyze first Hamilton-Jacobi equations with state constraints from the viewpoint of weak KAM theory, construct