ﻻ يوجد ملخص باللغة العربية
In this manuscript, we propose a structural condition on non-separable Hamiltonians, which we term displacement monotonicity condition, to study second order mean field games master equations. A rate of dissipation of a bilinear form is brought to bear a global (in time) well-posedness theory, based on a--priori uniform Lipschitz estimates on the solution in the measure variable. Displacement monotonicity being sometimes in dichotomy with the widely used Lasry-Lions monotonicity condition, the novelties of this work persist even when restricted to separable Hamiltonians.
In this note we prove the uniqueness of solutions to a class of Mean Field Games systems subject to possibly degenerate individual noise. Our results hold true for arbitrary long time horizons and for general non-separable Hamiltonians that satisfy a
In this paper we study second order master equations arising from mean field games with common noise over arbitrary time duration. A classical solution typically requires the monotonicity condition (or small time duration) and sufficiently smooth dat
This work establishes the equivalence between Mean Field Game and a class of compressible Navier-Stokes equations for their connections by Hamilton-Jacobi-Bellman equations. The existence of the Nash Equilibrium of the Mean Field Game, and hence the
We study first order evolutive Mean Field Games where the Hamiltonian is non-coercive. This situation occurs, for instance, when some directions are forbidden to the generic player at some points. We establish the existence of a weak solution of the
We study first order evolutive Mean Field Games whose operators are non-coercive. This situation occurs, for instance, when some directions are `forbidden to the generic player at some points. Under some regularity assumptions, we establish existence