ﻻ يوجد ملخص باللغة العربية
Image registration has played an important role in image processing problems, especially in medical imaging applications. It is well known that when the deformation is large, many variational models cannot ensure diffeomorphism. In this paper, we propose a new registration model based on an optimal control relaxation constraint for large deformation images, which can theoretically guarantee that the registration mapping is diffeomorphic. We present an analysis of optimal control relaxation for indirectly seeking the diffeomorphic transformation of Jacobian determinant equation and its registration applications, including the construction of diffeomorphic transformation as a special space. We also provide an existence result for the control increment optimization problem in the proposed diffeomorphic image registration model with an optimal control relaxation. Furthermore, a fast iterative scheme based on the augmented Lagrangian multipliers method (ALMM) is analyzed to solve the control increment optimization problem, and a convergence analysis is followed. Finally, a grid unfolding indicator is given, and a robust solving algorithm for using the deformation correction and backtrack strategy is proposed to guarantee that the solution is diffeomorphic. Numerical experiments show that the registration model we proposed can not only get a diffeomorphic mapping when the deformation is large, but also achieves the state-of-the-art performance in quantitative evaluations in comparing with other classical models.
In this article we study the problem of thoracic image registration, in particular the estimation of complex anatomical deformations associated with the breathing cycle. Using the intimate link between the Riemannian geometry of the space of diffeomo
3D image registration is one of the most fundamental and computationally expensive operations in medical image analysis. Here, we present a mixed-precision, Gauss--Newton--Krylov solver for diffeomorphic registration of two images. Our work extends t
We present a parallel distributed-memory algorithm for large deformation diffeomorphic registration of volumetric images that produces large isochoric deformations (locally volume preserving). Image registration is a key technology in medical image a
In this book chapter we study the Riemannian Geometry of the density registration problem: Given two densities (not necessarily probability densities) defined on a smooth finite dimensional manifold find a diffeomorphism which transforms one to the o
We propose regularization schemes for deformable registration and efficient algorithms for their numerical approximation. We treat image registration as a variational optimal control problem. The deformation map is parametrized by its velocity. Tikho