ﻻ يوجد ملخص باللغة العربية
3D image registration is one of the most fundamental and computationally expensive operations in medical image analysis. Here, we present a mixed-precision, Gauss--Newton--Krylov solver for diffeomorphic registration of two images. Our work extends the publicly available CLAIRE library to GPU architectures. Despite the importance of image registration, only a few implementations of large deformation diffeomorphic registration packages support GPUs. Our contributions are new algorithms to significantly reduce the run time of the two main computational kernels in CLAIRE: calculation of derivatives and scattered-data interpolation. We deploy (i) highly-optimized, mixed-precision GPU-kernels for the evaluation of scattered-data interpolation, (ii) replace Fast-Fourier-Transform (FFT)-based first-order derivatives with optimized 8th-order finite differences, and (iii) compare with state-of-the-art CPU and GPU implementations. As a highlight, we demonstrate that we can register $256^3$ clinical images in less than 6 seconds on a single NVIDIA Tesla V100. This amounts to over 20$times$ speed-up over the current version of CLAIRE and over 30$times$ speed-up over existing GPU implementations.
We present a parallel distributed-memory algorithm for large deformation diffeomorphic registration of volumetric images that produces large isochoric deformations (locally volume preserving). Image registration is a key technology in medical image a
We present a Gauss-Newton-Krylov solver for large deformation diffeomorphic image registration. We extend the publicly available CLAIRE library to multi-node multi-graphics processing unit (GPUs) systems and introduce novel algorithmic modifications
In this book chapter we study the Riemannian Geometry of the density registration problem: Given two densities (not necessarily probability densities) defined on a smooth finite dimensional manifold find a diffeomorphism which transforms one to the o
We propose regularization schemes for deformable registration and efficient algorithms for their numerical approximation. We treat image registration as a variational optimal control problem. The deformation map is parametrized by its velocity. Tikho
X-ray computed tomography is a commonly used technique for noninvasive imaging at synchrotron facilities. Iterative tomographic reconstruction algorithms are often preferred for recovering high quality 3D volumetric images from 2D X-ray images, howev