ﻻ يوجد ملخص باللغة العربية
A transition matrix $[U_{i,j}]_{i,jgeq 0}$ on $mathbb{N}$ is said to be almost upper triangular if $U_{i,j}geq 0Rightarrow jgeq i-1$, so that the increments of the corresponding Markov chains are at least $-1$; a transition matrix $[L_{i,j}]_{i,jgeq 0}$ is said to be almost lower triangular if $L_{i,j}geq 0Rightarrow jleq i+1$, and then, the increments of the corresponding Markov chains are at most $+1$. In the present paper, we characterize the recurrence, positive recurrence and invariant distribution for the class of almost triangular transition matrices. The upper case appears to be the simplest in many ways, with existence and uniqueness of invariant measures, when in the lower case, existence as well as uniqueness are not guaranteed. We present the time-reversal connection between upper and lower almost triangular transition matrices, which provides classes of integrable lower triangular transition matrices. These results encompass the case of birth and death processes (BDP) that are famous Markov chains (or processes) taking their values in $mathbb{N}$, which are simultaneously almost upper and almost lower triangular, and whose study has been initiated by Karlin & McGregor in the 1950s. They found invariant measures, criteria for recurrence, null recurrence, among others; their approach relies on some profound connections they discovered between the theory of BDP, the spectral properties of their transition matrices, the moment problem, and the theory of orthogonal polynomials. Our approach is mainly combinatorial and uses elementary algebraic methods; it is somehow more direct and does not use the same tools.
Dealing with finite Markov chains in discrete time, the focus often lies on convergence behavior and one tries to make different copies of the chain meet as fast as possible and then stick together. There is, however, a very peculiar kind of discrete
We review recent results on the metastable behavior of continuous-time Markov chains derived through the characterization of Markov chains as unique solutions of martingale problems.
We introduce the space of virtual Markov chains (VMCs) as a projective limit of the spaces of all finite state space Markov chains (MCs), in the same way that the space of virtual permutations is the projective limit of the spaces of all permutations
The aim of this paper is to develop a general theory for the class of skip-free Markov chains on denumerable state space. This encompasses their potential theory via an explicit characterization of their potential kernel expressed in terms of family
We describe estimators $chi_n(X_0,X_1,...,X_n)$, which when applied to an unknown stationary process taking values from a countable alphabet ${cal X}$, converge almost surely to $k$ in case the process is a $k$-th order Markov chain and to infinity otherwise.