ترغب بنشر مسار تعليمي؟ اضغط هنا

Segregating Markov chains

126   0   0.0 ( 0 )
 نشر من قبل Timo Hirscher
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Dealing with finite Markov chains in discrete time, the focus often lies on convergence behavior and one tries to make different copies of the chain meet as fast as possible and then stick together. There is, however, a very peculiar kind of discrete finite Markov chain, for which two copies started in different states can be coupled to meet almost surely in finite time, yet their distributions keep a total variation distance bounded away from 0, even in the limit as time goes off to infinity. We show that the supremum of total variation distance kept in this context is $frac12$.



قيم البحث

اقرأ أيضاً

257 - C. Landim 2018
We review recent results on the metastable behavior of continuous-time Markov chains derived through the characterization of Markov chains as unique solutions of martingale problems.
We introduce the space of virtual Markov chains (VMCs) as a projective limit of the spaces of all finite state space Markov chains (MCs), in the same way that the space of virtual permutations is the projective limit of the spaces of all permutations of finite sets. We introduce the notions of virtual initial distribution (VID) and a virtual transition matrix (VTM), and we show that the law of any VMC is uniquely characterized by a pair of a VID and VTM which have to satisfy a certain compatibility condition. Lastly, we study various properties of compact convex sets associated to the theory of VMCs, including that the Birkhoff-von Neumann theorem fails in the virtual setting.
The aim of this paper is to develop a general theory for the class of skip-free Markov chains on denumerable state space. This encompasses their potential theory via an explicit characterization of their potential kernel expressed in terms of family of fundamental excessive functions, which are defined by means of the theory of Martin boundary. We also describe their fluctuation theory generalizing the celebrated fluctuations identities that were obtained by using the Wiener-Hopf factorization for the specific skip-free random walks. We proceed by resorting to the concept of similarity to identify the class of skip-free Markov chains whose transition operator has only real and simple eigenvalues. We manage to find a set of sufficient and easy-to-check conditions on the one-step transition probability for a Markov chain to belong to this class. We also study several properties of this class including their spectral expansions given in terms of Riesz basis, derive a necessary and sufficient condition for this class to exhibit a separation cutoff, and give a tighter bound on its convergence rate to stationarity than existing results.
165 - G. Morvai , B. Weiss 2007
We describe estimators $chi_n(X_0,X_1,...,X_n)$, which when applied to an unknown stationary process taking values from a countable alphabet ${cal X}$, converge almost surely to $k$ in case the process is a $k$-th order Markov chain and to infinity otherwise.
Continuous-time Markov chains are mathematical models that are used to describe the state-evolution of dynamical systems under stochastic uncertainty, and have found widespread applications in various fields. In order to make these models computation ally tractable, they rely on a number of assumptions that may not be realistic for the domain of application; in particular, the ability to provide exact numerical parameter assessments, and the applicability of time-homogeneity and the eponymous Markov property. In this work, we extend these models to imprecise continuous-time Markov chains (ICTMCs), which are a robust generalisation that relaxes these assumptions while remaining computationally tractable. More technically, an ICTMC is a set of precise continuous-time finite-state stochastic processes, and rather than computing expected values of functions, we seek to compute lower expectations, which are tight lower bounds on the expectations that correspond to such a set of precise models. Note that, in contrast to e.g. Bayesian methods, all the elements of such a set are treated on equal grounds; we do not consider a distribution over this set. The first part of this paper develops a formalism for describing continuous-time finite-state stochastic processes that does not require the aforementioned simplifying assumptions. Next, this formalism is used to characterise ICTMCs and to investigate their properties. The concept of lower expectation is then given an alternative operator-theoretic characterisation, by means of a lower transition operator, and the properties of this operator are investigated as well. Finally, we use this lower transition operator to derive tractable algorithms (with polynomial runtime complexity w.r.t. the maximum numerical error) for computing the lower expectation of functions that depend on the state at any finite number of time points.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا