ﻻ يوجد ملخص باللغة العربية
One of the fundamental and most-studied algorithmic problems in distributed computing on networks is graph coloring, both in bounded-degree and in general graphs. Recently, the study of this problem has been extended in two directions. First, the problem of recoloring, that is computing an efficient transformation between two given colorings (instead of computing a new coloring), has been considered, both to model radio network updates, and as a useful subroutine for coloring. Second, as it appears that general graphs and bounded-degree graphs do not model real networks very well (with, respectively, pathological worst-case topologies and too strong assumptions), coloring has been studied in more specific graph classes. In this paper, we study the intersection of these two directions: distributed recoloring in two relevant graph classes, interval and chordal graphs.
Two (proper) colorings of a graph are adjacent if they differ on exactly one vertex. Jerrum proved that any $(d + 2)$-coloring of any d-degenerate graph can be transformed into any other via a sequence of adjacent colorings. A result of Bonamy et al.
Naor, Parter, and Yogev (SODA 2020) have recently demonstrated the existence of a emph{distributed interactive proof} for planarity (i.e., for certifying that a network is planar), using a sophisticated generic technique for constructing distributed
Coloring unit-disk graphs efficiently is an important problem in the global and distributed setting, with applications in radio channel assignment problems when the communication relies on omni-directional antennas of the same power. In this context
Suppose that D is an acyclic orientation of a graph G. An arc of D is called dependent if its reversal creates a directed cycle. Let m and M denote the minimum and the maximum of the number of dependent arcs over all acyclic orientations of G. We cal
We consider the problem of aggregating data in a dynamic graph, that is, aggregating the data that originates from all nodes in the graph to a specific node, the sink. We are interested in giving lower bounds for this problem, under different kinds o