ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributed coloring and the local structure of unit-disk graphs

75   0   0.0 ( 0 )
 نشر من قبل Louis Esperet
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Coloring unit-disk graphs efficiently is an important problem in the global and distributed setting, with applications in radio channel assignment problems when the communication relies on omni-directional antennas of the same power. In this context it is important to bound not only the complexity of the coloring algorithms, but also the number of colors used. In this paper, we consider two natural distributed settings. In the location-aware setting (when nodes know their coordinates in the plane), we give a constant time distributed algorithm coloring any unit-disk graph $G$ with at most $(3+epsilon)omega(G)+6$ colors, for any constant $epsilon>0$, where $omega(G)$ is the clique number of $G$. This improves upon a classical 3-approximation algorithm for this problem, for all unit-disk graphs whose chromatic number significantly exceeds their clique number. When nodes do not know their coordinates in the plane, we give a distributed algorithm in the LOCAL model that colors every unit-disk graph $G$ with at most $5.68omega(G)$ colors in $O(2^{sqrt{log log n}})$ rounds. Moreover, when $omega(G)=O(1)$, the algorithm runs in $O(log^* n)$ rounds. This algorithm is based on a study of the local structure of unit-disk graphs, which is of independent interest. We conjecture that every unit-disk graph $G$ has average degree at most $4omega(G)$, which would imply the existence of a $O(log n)$ round algorithm coloring any unit-disk graph $G$ with (approximatively) $4omega(G)$ colors.



قيم البحث

اقرأ أيضاً

In this paper we study fractional coloring from the angle of distributed computing. Fractional coloring is the linear relaxation of the classical notion of coloring, and has many applications, in particular in scheduling. It was proved by Hasemann, H irvonen, Rybicki and Suomela (2016) that for every real $alpha>1$ and integer $Delta$, a fractional coloring of total weight at most $alpha(Delta+1)$ can be obtained deterministically in a single round in graphs of maximum degree $Delta$, in the LOCAL model of computation. However, a major issue of this result is that the output of each vertex has unbounded size. Here we prove that even if we impose the more realistic assumption that the output of each vertex has constant size, we can find fractional colorings of total weight arbitrarily close to known tight bounds for the fractional chromatic number in several cases of interest. More precisely, we show that for any fixed $epsilon > 0$ and $Delta$, a fractional coloring of total weight at most $Delta+epsilon$ can be found in $O(log^*n)$ rounds in graphs of maximum degree $Delta$ with no $K_{Delta+1}$, while finding a fractional coloring of total weight at most $Delta$ in this case requires $Omega(log log n)$ rounds for randomized algorithms and $Omega( log n)$ rounds for deterministic algorithms. We also show how to obtain fractional colorings of total weight at most $2+epsilon$ in grids of any fixed dimension, for any $epsilon>0$, in $O(log^*n)$ rounds. Finally, we prove that in sparse graphs of large girth from any proper minor-closed family we can find a fractional coloring of total weight at most $2+epsilon$, for any $epsilon>0$, in $O(log n)$ rounds.
We give algorithms with running time $2^{O({sqrt{k}log{k}})} cdot n^{O(1)}$ for the following problems. Given an $n$-vertex unit disk graph $G$ and an integer $k$, decide whether $G$ contains (1) a path on exactly/at least $k$ vertices, (2) a cycle o n exactly $k$ vertices, (3) a cycle on at least $k$ vertices, (4) a feedback vertex set of size at most $k$, and (5) a set of $k$ pairwise vertex-disjoint cycles. For the first three problems, no subexponential time parameterized algorithms were previously known. For the remaining two problems, our algorithms significantly outperform the previously best known parameterized algorithms that run in time $2^{O(k^{0.75}log{k})} cdot n^{O(1)}$. Our algorithms are based on a new kind of tree decompositions of unit disk graphs where the separators can have size up to $k^{O(1)}$ and there exists a solution that crosses every separator at most $O(sqrt{k})$ times. The running times of our algorithms are optimal up to the $log{k}$ factor in the exponent, assuming the Exponential Time Hypothesis.
A conflict-free k-coloring of a graph assigns one of k different colors to some of the vertices such that, for every vertex v, there is a color that is assigned to exactly one vertex among v and vs neighbors. Such colorings have applications in wirel ess networking, robotics, and geometry, and are well-studied in graph theory. Here we study the natural problem of the conflict-free chromatic number chi_CF(G) (the smallest k for which conflict-free k-colorings exist). We provide results both for closed neighborhoods N[v], for which a vertex v is a member of its neighborhood, and for open neighborhoods N(v), for which vertex v is not a member of its neighborhood. For closed neighborhoods, we prove the conflict-free variant of the famous Hadwiger Conjecture: If an arbitrary graph G does not contain K_{k+1} as a minor, then chi_CF(G) <= k. For planar graphs, we obtain a tight worst-case bound: three colors are sometimes necessary and always sufficient. We also give a complete characterization of the computational complexity of conflict-free coloring. Deciding whether chi_CF(G)<= 1 is NP-complete for planar graphs G, but polynomial for outerplanar graphs. Furthermore, deciding whether chi_CF(G)<= 2 is NP-complete for planar graphs G, but always true for outerplanar graphs. For the bicriteria problem of minimizing the number of colored vertices subject to a given bound k on the number of colors, we give a full algorithmic characterization in terms of complexity and approximation for outerplanar and planar graphs. For open neighborhoods, we show that every planar bipartite graph has a conflict-free coloring with at most four colors; on the other hand, we prove that for k in {1,2,3}, it is NP-complete to decide whether a planar bipartite graph has a conflict-free k-coloring. Moreover, we establish that any general} planar graph has a conflict-free coloring with at most eight colors.
We show that the $(degree+1)$-list coloring problem can be solved deterministically in $O(D cdot log n cdotlog^2Delta)$ rounds in the CONGEST model, where $D$ is the diameter of the graph, $n$ the number of nodes, and $Delta$ the maximum degree. Usin g the recent polylogarithmic-time deterministic network decomposition algorithm by Rozhov{n} and Ghaffari [STOC 2020], this implies the first efficient (i.e., $polylog n$-time) deterministic CONGEST algorithm for the $(Delta+1)$-coloring and the $(mathit{degree}+1)$-list coloring problem. Previously the best known algorithm required $2^{O(sqrt{log n})}$ rounds and was not based on network decompositions. Our techniques also lead to deterministic $(mathit{degree}+1)$-list coloring algorithms for the congested clique and the massively parallel computation (MPC) model. For the congested clique, we obtain an algorithm with time complexity $O(logDeltacdotloglogDelta)$, for the MPC model, we obtain algorithms with round complexity $O(log^2Delta)$ for the linear-memory regime and $O(log^2Delta + log n)$ for the sublinear memory regime.
One of the fundamental and most-studied algorithmic problems in distributed computing on networks is graph coloring, both in bounded-degree and in general graphs. Recently, the study of this problem has been extended in two directions. First, the pro blem of recoloring, that is computing an efficient transformation between two given colorings (instead of computing a new coloring), has been considered, both to model radio network updates, and as a useful subroutine for coloring. Second, as it appears that general graphs and bounded-degree graphs do not model real networks very well (with, respectively, pathological worst-case topologies and too strong assumptions), coloring has been studied in more specific graph classes. In this paper, we study the intersection of these two directions: distributed recoloring in two relevant graph classes, interval and chordal graphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا