ﻻ يوجد ملخص باللغة العربية
We calculate Sorkins manifestly covariant entanglement entropy $mathcal{S}$ for a massive and massless minimally coupled free Gaussian scalar field for the de Sitter horizon and Schwarzschild de Sitter horizons respectively in $d > 2$. In de Sitter spacetime we restrict the Bunch-Davies vacuum in the conformal patch to the static patch to obtain a mixed state. The finiteness of the spatial $mathcal{L}^2$ norm in the static patch implies that $mathcal{S}$ is well defined for each mode. We find that $mathcal{S}$ for this mixed state is independent of the effective mass of the scalar field, and matches that of Higuchi and Yamamoto, where, a spatial density matrix was used to calculate the horizon entanglement entropy. Using a cut-off in the angular modes we show that $mathcal{S} propto A_{c}$, where $A_c$ is the area of the de Sitter cosmological horizon. Our analysis can be carried over to the black hole and cosmological horizon in Schwarzschild de Sitter spacetime, which also has finite spatial $mathcal{L}^2$ norm in the static regions. Although the explicit form of the modes is not known in this case, we use appropriate boundary conditions for a massless minimally coupled scalar field to find the mode-wise $mathcal{S}_{b,c}$, where $b,c$ denote the black hole and de Sitter cosmological horizons, respectively. As in the de Sitter calculation we see that $mathcal{S}_{b,c} propto A_{b,c}$ after taking a cut-off in the angular modes.
de Sitter cosmological horizons are known to exhibit thermodynamic properties similar to black hole horizons. In this work we study causal set de Sitter horizons, using Sorkins spacetime entanglement entropy (SSEE) formula, for a conformally coupled
Based on the consideration that the black hole horizon and the cosmological horizon of Kerr-de Sitter black hole are not independent each other, we conjecture the total entropy of the system should have an extra term contributed from the correlations
The basic equations of the thermodynamic system give the relationship between the internal energy, entropy and volume of two neighboring equilibrium states. By using the functional relationship between the state parameters in the basic equation, we g
Using the analytic extension method, we study Hawking radiation of an $(n + 4)$-dimensional Schwarzschild-de Sitter black hole. Under the condition that the total energy is conserved, taking the reaction of the radiation of particles to the spacetime
The fundamental equation of the thermodynamic system gives the relation between internal energy, entropy and volume of two adjacent equilibrium states. Taking higher dimensional charged Gauss-Bonnet black hole in de Sitter space as a thermodynamic sy