ﻻ يوجد ملخص باللغة العربية
The basic equations of the thermodynamic system give the relationship between the internal energy, entropy and volume of two neighboring equilibrium states. By using the functional relationship between the state parameters in the basic equation, we give the differential equation satisfied by the entropy of spacetime. We can obtain the expression of the entropy by solving the differential equationy. This expression is the sum of entropy corresponding to the two event horizons and the interaction term. The interaction term is a function of the ratio of the locations of the black hole horizon and the cosmological horizon. The entropic force, which is strikingly similar to the Lennard-Jones force between particles, varies with the ratio of the two event horizons. The discovery of this phenomenon makes us realize that the entropic force between the two horizons may be one of the candidates to promote the expansion of the universe.
The fundamental equation of the thermodynamic system gives the relation between internal energy, entropy and volume of two adjacent equilibrium states. Taking higher dimensional charged Gauss-Bonnet black hole in de Sitter space as a thermodynamic sy
We study the instability of the charged Gauss-Bonnet de Sitter black holes under gravito-electromagnetic perturbations. We adopt two criteria to search for an instability of the scalar type perturbations, including the local instability criterion bas
We calculate Sorkins manifestly covariant entanglement entropy $mathcal{S}$ for a massive and massless minimally coupled free Gaussian scalar field for the de Sitter horizon and Schwarzschild de Sitter horizons respectively in $d > 2$. In de Sitter s
We investigate the thermodynamics of Gauss-Bonnet black holes in asymptotically de Sitter spacetimes embedded in an isothermal cavity, via a Euclidean action approach. We consider both charged and uncharged black holes, working in the extended phase
We study the linear instability of the charged massless scalar perturbation in regularized 4D charged Einstein-Gauss-Bonnet-AdS black holes by exploring the quasinormal modes. We find that the linear instability is triggered by superradiance. The cha