ﻻ يوجد ملخص باللغة العربية
High-fidelity two-qubits gates are essential for the realization of large-scale quantum computation and simulation. Tunable coupler design is used to reduce the problem of parasitic coupling and frequency crowding in many-qubit systems and thus thought to be advantageous. Here we design a extensible 5-qubit system in which center transmon qubit can couple to every four near-neighbor qubit via a capacitive tunable coupler and experimentally demonstrate high-fidelity controlled-phase (CZ) gate by manipulating center qubit and one near-neighbor qubit. Speckle purity benchmarking (SPB) and cross entrophy benchmarking (XEB) are used to assess the purity fidelity and the fidelity of the CZ gate. The average purity fidelity of the CZ gate is 99.69$pm$0.04% and the average fidelity of the CZ gate is 99.65$pm$0.04% which means the control error is about 0.04%. Our work will help resovle many chanllenges in the implementation of large scale quantum systems.
High fidelity two-qubit gates are fundamental for scaling up the superconducting number. We use two qubits coupled via a frequency-tunable coupler which can adjust the coupling strength, and demonstrate the CZ gate using two different schemes, adiaba
Superconducting circuits with coupler architecture receive considerable attention due to their advantages in tunability and scalability. Although single-qubit gates with low error have been achieved, high-fidelity two-qubit gates in coupler architect
High-fidelity parametric gates have been demonstrated with superconducting qubits via rf flux modulation of the qubit frequency. The modulation however leads to renormalization of the bare qubit-qubit coupling, thereby reducing the gate speed. Here,
We demonstrate diabatic two-qubit gates with Pauli error rates down to $4.3(2)cdot 10^{-3}$ in as fast as 18 ns using frequency-tunable superconducting qubits. This is achieved by synchronizing the entangling parameters with minima in the leakage cha
Based on a `shortcut-to-adiabaticity (STA) scheme, we theoretically design and experimentally realize a set of high-fidelity single-qubit quantum gates in a superconducting Xmon qubit system. Through a precise microwave control, the qubit is driven t