ﻻ يوجد ملخص باللغة العربية
High-fidelity parametric gates have been demonstrated with superconducting qubits via rf flux modulation of the qubit frequency. The modulation however leads to renormalization of the bare qubit-qubit coupling, thereby reducing the gate speed. Here, we realize a parametric-resonance gate, which is activated by bringing the average frequency of the modulated qubit in resonance with a static-frequency qubit while approximately retaining the bare qubit-qubit coupling. The activation of parametric-resonance gates does not depend on the frequency of modulation, allowing us to choose the modulation frequencies and avoid frequency collisions. Moreover, we show that this approach is compatible with tunable coupler architectures, which reduce always-on residual couplings. Using these techniques, we demonstrate iSWAP and CZ gates between two qubits coupled via a tunable coupler with average process fidelities as high as $99.3%$ and $97.9%$, respectively. The flexibility in activating parametric-resonance gates combined with a tunable coupler architecture provides a pathway for building large-scale quantum computers.
We show that parametric coupling techniques can be used to generate selective entangling interactions for multi-qubit processors. By inducing coherent population exchange between adjacent qubits under frequency modulation, we implement a universal ga
High fidelity two-qubit gates are fundamental for scaling up the superconducting number. We use two qubits coupled via a frequency-tunable coupler which can adjust the coupling strength, and demonstrate the CZ gate using two different schemes, adiaba
High-fidelity two-qubits gates are essential for the realization of large-scale quantum computation and simulation. Tunable coupler design is used to reduce the problem of parasitic coupling and frequency crowding in many-qubit systems and thus thoug
We develop a theory for non-degenerate parametric resonance in a tunable superconducting cavity. We focus on nonlinear effects that are caused by nonlinear Josephson elements connected to the cavity. We analyze parametric amplification in a strong no
Not all quantum protocols require entanglement to outperform their classical alternatives. The nonclassical correlations that lead to this quantum advantage are conjectured to be captured by quantum discord. Here we demonstrate that discord can be ex