ﻻ يوجد ملخص باللغة العربية
For a non-negative integer $sle |V(G)|-3$, a graph $G$ is $s$-Hamiltonian if the removal of any $kle s$ vertices results in a Hamiltonian graph. Given a connected simple graph $G$ that is not isomorphic to a path, a cycle, or a $K_{1,3}$, let $delta(G)$ denote the minimum degree of $G$, let $h_s(G)$ denote the smallest integer $i$ such that the iterated line graph $L^{i}(G)$ is $s$-Hamiltonian, and let $ell(G)$ denote the length of the longest non-closed path $P$ in which all internal vertices have degree 2 such that $P$ is not both of length 2 and in a $K_3$. For a simple graph $G$, we establish better upper bounds for $h_s(G)$ as follows. begin{equation*} h_s(G)le left{ begin{aligned} & ell(G)+1, &&mbox{ if }delta(G)le 2 mbox{ and }s=0; & widetilde d(G)+2+lceil lg (s+1)rceil, &&mbox{ if }delta(G)le 2 mbox{ and }sge 1; & 2+leftlceillgfrac{s+1}{delta(G)-2}rightrceil, && mbox{ if } 3ledelta(G)le s+2; & 2, &&{rm otherwise}, end{aligned} right. end{equation*} where $widetilde d(G)$ is the smallest integer $i$ such that $delta(L^i(G))ge 3$. Consequently, when $s ge 5$, this new upper bound for the $s$-hamiltonian index implies that $h_s(G) = o(ell(G)+s+1)$ as $s to infty$. This sharpens the result, $h_s(G)leell(G)+s+1$, obtained by Zhang et al. in [Discrete Math., 308 (2008) 4779-4785].
In this note we obtain a new bound for the acyclic edge chromatic number $a(G)$ of a graph $G$ with maximum degree $D$ proving that $a(G)leq 3.569(D-1)$. To get this result we revisit and slightly modify the method described in [Giotis, Kirousis, Psa
Xiong and Liu [L. Xiong and Z. Liu, Hamiltonian iterated line graphs, Discrete Math. 256 (2002) 407-422] gave a characterization of the graphs $G$ for which the $n$-th iterated line graph $L^n(G)$ is hamiltonian, for $nge2$. In this paper, we study t
The Wiener index of a connected graph is the summation of all distances between unordered pairs of vertices of the graph. In this paper, we give an upper bound on the Wiener index of a $k$-connected graph $G$ of order $n$ for integers $n-1>k ge 1$:
An adjacent vertex distinguishing coloring of a graph G is a proper edge coloring of G such that any pair of adjacent vertices are incident with distinct sets of colors. The minimum number of colors needed for an adjacent vertex distinguishing colori
The Shannon lower bound is one of the few lower bounds on the rate-distortion function that holds for a large class of sources. In this paper, it is demonstrated that its gap to the rate-distortion function vanishes as the allowed distortion tends to