ﻻ يوجد ملخص باللغة العربية
An adjacent vertex distinguishing coloring of a graph G is a proper edge coloring of G such that any pair of adjacent vertices are incident with distinct sets of colors. The minimum number of colors needed for an adjacent vertex distinguishing coloring of G is denoted by $chi_a(G)$. In this paper, we prove that $chi_a(G)$ <= 5($Delta+2$)/2 for any graph G having maximum degree $Delta$ and no isolated edges. This improves a result in [S. Akbari, H. Bidkhori, N. Nosrati, r-Strong edge colorings of graphs, Discrete Math. 306 (2006), 3005-3010], which states that $chi_a(G)$ <= 3$Delta$ for any graph G without isolated edges.
The Wiener index of a connected graph is the summation of all distances between unordered pairs of vertices of the graph. In this paper, we give an upper bound on the Wiener index of a $k$-connected graph $G$ of order $n$ for integers $n-1>k ge 1$:
In this note we obtain a new bound for the acyclic edge chromatic number $a(G)$ of a graph $G$ with maximum degree $D$ proving that $a(G)leq 3.569(D-1)$. To get this result we revisit and slightly modify the method described in [Giotis, Kirousis, Psa
A $k$-proper edge-coloring of a graph G is called adjacent vertex-distinguishing if any two adjacent vertices are distinguished by the set of colors appearing in the edges incident to each vertex. The smallest value $k$ for which $G$ admits such colo
The strong chromatic index of a graph $G$, denoted $chi_s(G)$, is the least number of colors needed to edge-color $G$ so that edges at distance at most two receive distinct colors. The strong list chromatic index, denoted $chi_{s,ell}(G)$, is the lea
The $chi$-stability index ${rm es}_{chi}(G)$ of a graph $G$ is the minimum number of its edges whose removal results in a graph with the chromatic number smaller than that of $G$. In this paper three open problems from [European J. Combin. 84 (2020)