ﻻ يوجد ملخص باللغة العربية
Measurement of social phenomena is everywhere, unavoidably, in sociotechnical systems. This is not (only) an academic point: Fairness-related harms emerge when there is a mismatch in the measurement process between the thing we purport to be measuring and the thing we actually measure. However, the measurement process -- where social, cultural, and political values are implicitly encoded in sociotechnical systems -- is almost always obscured. Furthermore, this obscured process is where important governance decisions are encoded: governance about which systems are fair, which individuals belong in which categories, and so on. We can then use the language of measurement, and the tools of construct validity and reliability, to uncover hidden governance decisions. In particular, we highlight two types of construct validity, content validity and consequential validity, that are useful to elicit and characterize the feedback loops between the measurement, social construction, and enforcement of social categories. We then explore the constructs of fairness, robustness, and responsibility in the context of governance in and for responsible AI. Together, these perspectives help us unpack how measurement acts as a hidden governance process in sociotechnical systems. Understanding measurement as governance supports a richer understanding of the governance processes already happening in AI -- responsible or otherwise -- revealing paths to more effective interventions.
In the current era, people and society have grown increasingly reliant on artificial intelligence (AI) technologies. AI has the potential to drive us towards a future in which all of humanity flourishes. It also comes with substantial risks for oppre
The history of science and technology shows that seemingly innocuous developments in scientific theories and research have enabled real-world applications with significant negative consequences for humanity. In order to ensure that the science and te
In the last few years, AI continues demonstrating its positive impact on society while sometimes with ethically questionable consequences. Building and maintaining public trust in AI has been identified as the key to successful and sustainable innova
There have been increasing concerns about Artificial Intelligence (AI) due to its unfathomable potential power. To make AI address ethical challenges and shun undesirable outcomes, researchers proposed to develop socially responsible AI (SRAI). One o
Many researchers work on improving the data efficiency of machine learning. What would happen if they succeed? This paper explores the social-economic impact of increased data efficiency. Specifically, we examine the intuition that data efficiency wi