ﻻ يوجد ملخص باللغة العربية
Many researchers work on improving the data efficiency of machine learning. What would happen if they succeed? This paper explores the social-economic impact of increased data efficiency. Specifically, we examine the intuition that data efficiency will erode the barriers to entry protecting incumbent data-rich AI firms, exposing them to more competition from data-poor firms. We find that this intuition is only partially correct: data efficiency makes it easier to create ML applications, but large AI firms may have more to gain from higher performing AI systems. Further, we find that the effect on privacy, data markets, robustness, and misuse are complex. For example, while it seems intuitive that misuse risk would increase along with data efficiency -- as more actors gain access to any level of capability -- the net effect crucially depends on how much defensive measures are improved. More investigation into data efficiency, as well as research into the AI production function, will be key to understanding the development of the AI industry and its societal impacts.
Autonomous Vehicles (AVs) raise important social and ethical concerns, especially about accountability, dignity, and justice. We focus on the specific concerns arising from how AV technology will affect the lives and livelihoods of professional and s
Measurement of social phenomena is everywhere, unavoidably, in sociotechnical systems. This is not (only) an academic point: Fairness-related harms emerge when there is a mismatch in the measurement process between the thing we purport to be measurin
With the recent advances of the Internet of Things, and the increasing accessibility of ubiquitous computing resources and mobile devices, the prevalence of rich media contents, and the ensuing social, economic, and cultural changes, computing techno
In a world increasingly dominated by AI applications, an understudied aspect is the carbon and social footprint of these power-hungry algorithms that require copious computation and a trove of data for training and prediction. While profitable in the
Like any technology, AI systems come with inherent risks and potential benefits. It comes with potential disruption of established norms and methods of work, societal impacts and externalities. One may think of the adoption of technology as a form of