ﻻ يوجد ملخص باللغة العربية
Nonlinear optical (NLO) responses of topological materials are under active research in recent years. Yet by far most studies focused on the bulk properties, whereas the surface effects and the difference between surface and bulk responses have not been systematically studied. In this work, we develop a generic Greens function framework to investigate the surface NLO properties of topological materials. The Greens function framework can naturally incorporate many body effects and can be easily extended to high order NLO responses. Using $rm T_d WTe_2$ as an example, we reveal that the surface can behave disparately from the bulk under light illumination. Remarkably, the shift and circular current on the surface can flow in opposite directions to that in the bulk. Moreover, the light induced spin current on the surface can be orders of magnitude stronger than that in the bulk. We also study the responses under inhomogeneous field and higher order NLO effect, which are all distinct on the surface. These anomalous surface NLO responses suggest that light can be a valuable tool for probing the surface states of topological materials, while on the other hand, the surface effects shall be prudently considered when investigating the optical properties of topological materials.
Topological semimetals exhibit band crossings near the Fermi energy, which are protected by the nontrivial topological character of the wave functions. In many cases, these topological band degeneracies give rise to exotic surface states and unusual
Avalanche phenomena leverage steeply nonlinear dynamics to generate disproportionately high responses from small perturbations and are found in a multitude of events and materials, enabling technologies including optical phase-conjugate imaging, infr
The nonlinear optical responses from topological semimetals are crucial in both understanding the fundamental properties of quantum materials and designing next-generation light-sensors or solar-cells. However, previous work was focusing on the optic
We review theoretical and experimental highlights in transport in two-dimensional materials focussing on key developments over the last five years. Topological insulators are finding applications in magnetic devices, while Hall transport in doped sam
We performed ultrafast degenerate pump-probe spectroscopy on monolayer WSe2 near its exciton resonance. The observed differential reflectance signals exhibit signatures of strong many-body interactions including the exciton-exciton interaction and fr