ترغب بنشر مسار تعليمي؟ اضغط هنا

Many-body effects in nonlinear optical responses of 2D layered semiconductors

125   0   0.0 ( 0 )
 نشر من قبل Hongyi Yu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We performed ultrafast degenerate pump-probe spectroscopy on monolayer WSe2 near its exciton resonance. The observed differential reflectance signals exhibit signatures of strong many-body interactions including the exciton-exciton interaction and free carrier induced band gap renormalization. The exciton-exciton interaction results in a resonance blue shift which lasts for the exciton lifetime (several ps), while the band gap renormalization manifests as a resonance red shift with several tens ps lifetime. Our model based on the many-body interactions for the nonlinear optical susceptibility fits well the experimental observations. The power dependence of the spectra shows that with the increase of pump power, the exciton population increases linearly and then saturates, while the free carrier density increases superlinearly, implying that exciton Auger recombination could be the origin of these free carriers. Our model demonstrates a simple but efficient method for quantitatively analyzing the spectra, and indicates the important role of Coulomb interactions in nonlinear optical responses of such 2D materials.



قيم البحث

اقرأ أيضاً

Interactions between two excitons can result in the formation of bound quasiparticles, known as biexcitons. Their properties are determined by the constituent excitons, with orbital and spin states resembling those of atoms. Monolayer transition meta l dichalcogenides (TMDs) present a unique system where excitons acquire a new degree of freedom, the valley pseudospin, from which a novel intervalley biexciton can be created. These biexcitons comprise two excitons from different valleys, which are distinct from biexcitons in conventional semiconductors and have no direct analogue in atomic and molecular systems. However, their valley properties are not accessible to traditional transport and optical measurements. Here, we report the observation of intervalley biexcitons in the monolayer TMD MoS2 using ultrafast pump-probe spectroscopy. By applying broadband probe pulses with different helicities, we identify two species of intervalley biexcitons with large binding energies of 60 meV and 40 meV. In addition, we also reveal effects beyond biexcitonic pairwise interactions in which the exciton energy redshifts at increasing exciton densities, indicating the presence of many-body interactions among them.
We report experiments demonstrating Quantum Interference Control (QuIC) based on two nonlinear optical absorption processes in semiconductors. We use two optical beams of frequencies $omega$ and $3omega /2$ incident on AlGaAs and measure the injectio n current due to the interference between 2- and 3-photon absorption processes. We analyze the dependence of the injection current on the intensities and phases of the incident fields.
Antiferromagnetism (AF) in AB-stacked centrosymmetric bilayer (BL) CrI$_3$ breaks both spatial inversion ($P$) and time-reversal ($T$) symmetries but maintains the combined $PT$ symmetry, thus inducing novel second-order nonlinear optical (NLO) respo nses such as second-harmonic generation (SHG), linear electric-optic effect (LEO) and bulk photovoltaic effect (BPVE). In this work, we calculate AF-induced NLO responses of the BL CrI$_3$ based on the density functional theory with the generalized gradient approximation (GGA) plus onsite Coulomb correlation (U), i.e., the GGA+U method. Interestingly, we find that the magnetic SHG, LEO and photocurrent in the AF BL CrI$_3$ are huge, being comparable or even larger than that of the well-known nonmagnetic noncentrosymmetric semiconductors. For example, the calculated SHG coefficients are in the same order of magnitude as that of MoS$_2$ monolayer (ML), the most promising 2D material for NLO devices. The calculated LEO coefficients are almost three times larger than that of MoS$_2$ ML. The calculated NLO photocurrent in the CrI$_3$ BL is among the largest values predicted so far for the BPVE materials. On the other hand, unlike nonmagnetic semiconductors, the NLO responses in the AF BL CrI$_3$ are nonreciprocal and also switchable by rotating magnetization direction. Therefore, our interesting findings indicate that the AF BL CrI$_3$ will not only provide a valuable platform for exploring new physics of low-dimensional magnetism but also have promising applications in magnetic NLO and LEO devices such as frequency conversion, electro-optical switches, and light signal modulators as well as high energy conversion efficiency photovoltaic solar cells.
Twist-engineering of the electronic structure of van-der-Waals layered materials relies predominantly on band hybridization between layers. Band-edge states in transition-metal-dichalcogenide semiconductors are localized around the metal atoms at the center of the three-atom layer and are therefore not particularly susceptible to twisting. Here, we report that high-lying excitons in bilayer WSe2 can be tuned over 235 meV by twisting, with a twist-angle susceptibility of 8.1 meV/{deg}, an order of magnitude larger than that of the band-edge A-exciton. This tunability arises because the electronic states associated with upper conduction bands delocalize into the chalcogenide atoms. The effect gives control over excitonic quantum interference, revealed in selective activation and deactivation of electromagnetically induced transparency (EIT) in second-harmonic generation. Such a degree of freedom does not exist in conventional dilute atomic-gas systems, where EIT was originally established, and allows us to shape the frequency dependence, i.e. the dispersion, of the optical nonlinearity.
Reliable and precise measurements of the relative energy of band edges in semiconductors are needed to determine band gaps and band offsets, as well as to establish the band diagram of devices and heterostructures. These measurements are particularly important in the field of two-dimensional materials, in which many new semiconducting systems are becoming available through exfoliation of bulk crystals. For two-dimensional semiconductors, however, commonly employed techniques suffer from difficulties rooted either in the physics of these systems, or of technical nature. The very large exciton binding energy, for instance, prevents the band gap to be determined from a simple spectral analysis of photoluminescence, and the limited lateral size of atomically thin crystals makes the use of conventional scanning tunneling spectroscopy cumbersome. Ionic gate spectroscopy is a newly developed technique that exploits ionic gate field-effect transistors to determine quantitatively the relative alignment of band edges of two-dimensional semiconductors in a straightforward way, directly from transport measurements (i.e., from the transistor electrical characteristics). The technique relies on the extremely large geometrical capacitance of ionic gated devices that -- under suitable conditions -- enables a change in gate voltage to be directly related to a shift in chemical potential. Here we present an overview of ionic gate spectroscopy, and illustrate its relevance with applications to different two-dimensional semiconducting transition metal dichalcogenides and van der Waals heterostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا