ترغب بنشر مسار تعليمي؟ اضغط هنا

Superdensity and super-micro-uniformity in non-integrable flat systems

82   0   0.0 ( 0 )
 نشر من قبل William Chen
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that on any non-integrable finite polysquare translation surface, superdensity, an optimal form of time-quantitative density, leads to an optimal form of time-quantitative uniformity that we call super-micro-uniformity.



قيم البحث

اقرأ أيضاً

122 - J. Beck , W.W.L. Chen 2021
Consider a finite polysquare or square tiled region, a connected, but not necessarily simply-connected, polygonal region tiled with aligned unit squares. Using ideas from diophantine approximation, we prove that a half-infinite billiard orbit in such a region is superdense, a best possible form of time-quantitative density, if and only if the initial slope of the orbit is a badly approximable number. As the traditional approach to questions of density and uniformity via ergodic theory depends on results such as Birkhoffs ergodic theorem which are essentially time-qualitative in nature and do not appear to lead naturally to time-quantitative statements, we appeal to a non-ergodic approach that is based largely on number theory and combinatorics. In particular, we use the famous 3-distance theorem in diophantine approximation combined with an iterative process. This paper improves on an earlier result of the authors and Yang where it is shown that badly approximable numbers that satisfy a quite severe technical restriction on the digits of their continued fractions lead to superdensity. Here we overcome this technical impediment.
88 - J. Beck , W.W.L. Chen , 2021
This paper is motivated by an interesting problem studied more than 50 years ago by Veech and which can be considered a parity, or mod 2, version of the classical equidistribution problem concerning the irrational rotation sequence. The Veech discret e 2-circle problem can also be visualized as a continuous flat dynamical system, in the form of 1-direction geodesic flow on a 2-square-b surface, a surface obtained by modifying the surface comprising two side-by-side squares by the inclusion of barriers and gates on the vertical edges, with appropriate modification of the edge identifications. A famous result of Gutkin and Veech says that 1-direction geodesic flow on any flat finite polysquare translation surface exhibits optimal behavior, in the form of an elegant uniform-periodic dichotomy. However, for irrational values of b, the 2-square-b surface is not a polysquare surface, and Veech and others have highlighted serious violations of the uniform-periodic dichotomy. Here we extend some of the results of Veech to consider cases previously not covered, and also obtain some time-quantitative description of these violations. Furthermore, we establish a far-reaching generalization of some earlier results to the class of flat finite polysquare-b-rational translation surfaces, obtained from flat finite polysquare translation surfaces in a similar way that the 2-square-b surface is constructed.
104 - J. Beck , W.W.L. Chen 2021
We introduce a new method to establish time-quantitative density in flat dynamical systems. First we give a shorter and different proof of our earlier result that a half-infinite geodesic on an arbitrary finite polysquare surface P is superdense on P if the slope of the geodesic is a badly approximable number. We then adapt our method to study time-quantitative density of half-infinite geodesics on algebraic polyrectangle surfaces.
The main purpose of this paper is to investigate commuting flows and integrable systems on the configuration spaces of planar linkages. Our study leads to the definition of a natural volume form on each configuration space of planar linkages, the not ion of cross products of integrable systems, and also the notion of multi-Nambu integrable systems. The first integrals of our systems are functions of Bott-Morse type, which may be used to study the topology of configuration spaces. Dedicated to Anatoly T. Fomenko on the occasion of his 75th birthday
E. Cartan proved that conformally flat hypersurfaces in S^{n+1} for n>3 have at most two distinct principal curvatures and locally envelop a one-parameter family of (n-1)-spheres. We prove that the Gauss-Codazzi equation for conformally flat hypersur faces in S^4 is a soliton equation, and use a dressing action from soliton theory to construct geometric Ribaucour transforms of these hypersurfaces. We describe the moduli of these hypersurfaces in S^4 and their loop group symmetries. We also generalise these results to conformally flat n-immersions in (2n-2)-spheres with flat normal bundle and constant multiplicities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا