ﻻ يوجد ملخص باللغة العربية
In the paper [Hainaut, D. and Colwell, D.B., A structural model for credit risk with switching processes and synchronous jumps, The European Journal of Finance44(33) (4238):3262-3284], the authors exploit a synchronous-jump regime-switching model to compute the default probability of a publicly-traded company. Here, we first generalize the proposed Levy model to a more general setting of tempered stable processes recently introduced into the finance literature. Based on the singularity of the resulting partial integro-differential operator, we propose a general framework based on strictly positive-definite functions to de-singularize the operator. We then analyze an efficient meshfree collocation method based on radial basis functions to approximate the solution of the corresponding system of partial integro-differential equations arising from the structural credit risk model. We show that under some regularity assumptions, our proposed method naturally de-sinularizes the problem in the tempered stable case. Numerical results of applying the method on some standard examples from the literature confirm the accuracy of our theoretical results and numerical algorithm.
We propose a Markov regime switching GARCH model with multivariate normal tempered stable innovation to accommodate fat tails and other stylized facts in returns of financial assets. The model is used to simulate sample paths as input for portfolio o
Reproducing kernel (RK) approximations are meshfree methods that construct shape functions from sets of scattered data. We present an asymptotically compatible (AC) RK collocation method for nonlocal diffusion models with Dirichlet boundary condition
In this work, we study the reproducing kernel (RK) collocation method for the peridynamic Navier equation. We first apply a linear RK approximation on both displacements and dilatation, then back-substitute dilatation, and solve the peridynamic Navie
In this paper we present numerical simulations of a macroscopic vision-based model [1] derived from microscopic situation rules described in [2]. This model describes an approach to collision avoidance between pedestrians by taking decisions of turni
The inclusion of domain (point) sources into a three dimensional boundary element method while solving the Helmholtz equation is described. The method is fully desingularized which allows for the use of higher order quadratic elements on the surfaces