ﻻ يوجد ملخص باللغة العربية
In this paper we present numerical simulations of a macroscopic vision-based model [1] derived from microscopic situation rules described in [2]. This model describes an approach to collision avoidance between pedestrians by taking decisions of turning or slowing down based on basic interaction rules, where the dangerousness level of an interaction with another pedestrian is measured in terms of the derivative of the bearing angle and of the time-to-interaction. A meshfree particle method is used to solve the equations of the model. Several numerical cases are considered to compare this model with models established in the field, for example, social force model coupled to an Eikonal equation [3]. Particular emphasis is put on the comparison of evacuation and computation times. References 1. Degond P., Appert-Rolland C., Pettere J., Theraulaz G., Vision-based macroscopic pedestrian models, Kinetic and Related models, AIMs 6(4), 809-839 (2013) 2. Ondrej J., Pettere J., Olivier A.H., Donikian S., A synthetic-vision based steering approach for crowd simulation, ACM Transactions on Graphics, 29(4), Article 123 (2010) 3. Etikyala R., Gottlich S., Klar A., Tiwari S., Particle methods for pedestrian flow models: From microscopic to nonlocal continuum models, Mathematical Models and Methods in Applied Sciences, 20(12), 2503-2523 (2014)
We analyze numerically some macroscopic models of pedestrian motion such as Hughes model [1] and mean field game with nonlinear mobilities [2] modeling fast exit scenarios in pedestrian crowds. A model introduced by Hughes consisting of a non-linear
In the paper [Hainaut, D. and Colwell, D.B., A structural model for credit risk with switching processes and synchronous jumps, The European Journal of Finance44(33) (4238):3262-3284], the authors exploit a synchronous-jump regime-switching model to
Skin contraction is an important biophysical process that takes place during and after the recovery of deep tissue injury. This process is mainly caused by fibroblasts (skin cells) and myofibroblasts (differentiated fibroblasts) that exert pulling fo
The Kolmogorov $n$-width of the solution manifolds of transport-dominated problems can decay slowly. As a result, it can be challenging to design efficient and accurate reduced order models (ROMs) for such problems. To address this issue, we propose
We present a novel particle management method using the Characteristic Mapping framework. In the context of explicit evolution of parametrized curves and surfaces, the surface distribution of marker points created from sampling the parametric space i