ﻻ يوجد ملخص باللغة العربية
We study the problem of minimizing the number of critical simplices from the point of view of inapproximability and parameterized complexity. We first show inapproximability of Min-Morse Matching within a factor of $2^{log^{(1-epsilon)}n}$. Our second result shows that Min-Morse Matching is ${bf W{[P]}}$-hard with respect to the standard parameter. Next, we show that Min-Morse Matching with standard parameterization has no FPT approximation algorithm for any approximation factor $rho$. The above hardness results are applicable to complexes of dimension $ge 2$. On the positive side, we provide a factor $O(frac{n}{log n})$ approximation algorithm for Min-Morse Matching on $2$-complexes, noting that no such algorithm is known for higher dimensional complexes. Finally, we devise discrete gradients with very few critical simplices for typical instances drawn from a fairly wide range of parameter values of the Costa-Farber model of random complexes.
In this paper, we prove that the Max-Morse Matching Problem is approximable, thus resolving an open problem posed by Joswig and Pfetsch. We describe two different approximation algorithms for the Max-Morse Matching Problem. For $D$-dimensional simpli
In this paper, we consider the Target Set Selection problem: given a graph and a threshold value $thr(v)$ for any vertex $v$ of the graph, find a minimum size vertex-subset to activate s.t. all the vertices of the graph are activated at the end of th
Multidimensional packing problems generalize the classical packing problems such as Bin Packing, Multiprocessor Scheduling by allowing the jobs to be $d$-dimensional vectors. While the approximability of the scalar problems is well understood, there
A emph{2-interval} is the union of two disjoint intervals on the real line. Two 2-intervals $D_1$ and $D_2$ are emph{disjoint} if their intersection is empty (i.e., no interval of $D_1$ intersects any interval of $D_2$). There can be three different
An $h$-queue layout of a graph $G$ consists of a linear order of its vertices and a partition of its edges into $h$ queues, such that no two independent edges of the same queue nest. The minimum $h$ such that $G$ admits an $h$-queue layout is the que