ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the Target Set Selection problem: given a graph and a threshold value $thr(v)$ for any vertex $v$ of the graph, find a minimum size vertex-subset to activate s.t. all the vertices of the graph are activated at the end of the propagation process. A vertex $v$ is activated during the propagation process if at least $thr(v)$ of its neighbors are activated. This problem models several practical issues like faults in distributed networks or word-to-mouth recommendations in social networks. We show that for any functions $f$ and $rho$ this problem cannot be approximated within a factor of $rho(k)$ in $f(k) cdot n^{O(1)}$ time, unless FPT = W[P], even for restricted thresholds (namely constant and majority thresholds). We also study the cardinality constraint maximization and minimizati
In this paper we study the problem of finding a small safe set $S$ in a graph $G$, i.e. a non-empty set of vertices such that no connected component of $G[S]$ is adjacent to a larger component in $G - S$. We enhance our understanding of the problem f
We consider questions that arise from the intersection between the areas of polynomial-time approximation algorithms, subexponential-time algorithms, and fixed-parameter tractable algorithms. The questions, which have been asked several times (e.g.,
In $d$-Scattered Set we are given an (edge-weighted) graph and are asked to select at least $k$ vertices, so that the distance between any pair is at least $d$, thus generalizing Independent Set. We provide upper and lower bounds on the complexity of
Let $G$ be a graph on $n$ vertices and $mathrm{STAB}_k(G)$ be the convex hull of characteristic vectors of its independent sets of size at most $k$. We study extension complexity of $mathrm{STAB}_k(G)$ with respect to a fixed parameter $k$ (analogous
We study the problem of minimizing the number of critical simplices from the point of view of inapproximability and parameterized complexity. We first show inapproximability of Min-Morse Matching within a factor of $2^{log^{(1-epsilon)}n}$. Our secon