ﻻ يوجد ملخص باللغة العربية
Picture yourself in the wave zone of a gravitational scattering event of two massive, spinning compact bodies (black holes, neutron stars or stars). We show that this system of genuine astrophysical interest enjoys a hidden $mathcal{N}=2$ supersymmetry, at least to the order of spin-squared (quadrupole) interactions in arbitrary $D$ spacetime dimensions. Using the ${mathcal N}=2$ supersymmetric worldline action, augmented by finite-size corrections for the non-Kerr black hole case, we build a quadratic-in-spin extension to the worldline quantum field theory (WQFT) formalism introduced in our previous work, and calculate the two bodies deflection and spin kick to sub-leading order in the post-Minkowskian expansion in Newtons constant $G$. For spins aligned to the normal vector of the scattering plane we also obtain the scattering angle. All $D$-dimensional observables are derived from an eikonal phase given as the free energy of the WQFT, that is invariant under the $mathcal{N}=2$ supersymmetry transformations.
We show that when the gravitational field is treated quantum-mechanically, it induces fluctuations -- noise -- in the lengths of the arms of gravitational wave detectors. The characteristics of the noise depend on the quantum state of the gravitation
We study quantum noise and decoherence induced by gravitons. We derive a Langevin equation of geodesic deviation in the presence of gravitons. The amplitude of noise correlations tells us that large squeezing is necessary to detect the noise. We also
The Cartan-Penrose (CP) equation is interpreted as a connection between a spinor at a point in spacetime, and a pair of holographic screens on which the information at that point may be projected. Local SUSY is thus given a physical interpretation in
We explicitly construct every kinematically allowed three particle graviton-graviton-$P$ and photon-photon-$P$ S-matrix in every dimension and for every choice of the little group representation of the massive particle $P$. We also explicitly constru
We have found that supersymmetry (SUSY) in curved space is broken softly. It is also found that Pauli-Villars regularization preserves the remaining symmetry, softly broken SUSY. Using it we computed the one-loop effective potential along a (classica