ﻻ يوجد ملخص باللغة العربية
We study quantum noise and decoherence induced by gravitons. We derive a Langevin equation of geodesic deviation in the presence of gravitons. The amplitude of noise correlations tells us that large squeezing is necessary to detect the noise. We also consider the decoherence of spatial superpositions of two massive particles caused by gravitons in the vacuum state and find that gravitons could give a relevant contribution to the decoherence. The decoherence induced by gravitons would offer new vistas to test quantum gravity in tabletop experiments.
We show that when the gravitational field is treated quantum-mechanically, it induces fluctuations -- noise -- in the lengths of the arms of gravitational wave detectors. The characteristics of the noise depend on the quantum state of the gravitation
We study a class of decoherence process which admits a 3 dimensional holographic bulk. Starting from a thermo-field double dual to a wormhole, we prepare another thermo-field double which plays the role of environment. By allowing the energy flow bet
Picture yourself in the wave zone of a gravitational scattering event of two massive, spinning compact bodies (black holes, neutron stars or stars). We show that this system of genuine astrophysical interest enjoys a hidden $mathcal{N}=2$ supersymmet
We consider some aspects of spontaneous breaking of Lorentz Invariance in field theories, discussing the possibility that the certain tensor operators may condensate in the ground state in which case the tensor Goldstone particles would appear. We an
We explicitly construct every kinematically allowed three particle graviton-graviton-$P$ and photon-photon-$P$ S-matrix in every dimension and for every choice of the little group representation of the massive particle $P$. We also explicitly constru